The Proof-Search Problem (between bdd-width resolution and bdd-degree semi-algebraic proofs)

> Albert Atserias Universitat Politècnica de Catalunya Barcelona, Spain

Satisfiability

Example:

15 variables and 40 clauses

$x_1 \lor x_2 \lor x_6$	$x_1 \lor x_3 \lor x_7$	$x_1 \lor x_4 \lor x_8$	$x_1 \lor x_5 \lor x_9$
$x_2 \lor x_3 \lor x_{10}$	$x_2 \lor x_4 \lor x_{11}$	$x_2 \lor x_5 \lor x_{12}$	$x_3 \lor x_4 \lor x_{13}$
$x_3 \lor x_5 \lor x_{14}$	$x_4 \lor x_5 \lor x_{15}$	$x_6 \lor x_7 \lor x_{10}$	$x_6 \lor x_8 \lor x_{11}$
$x_6 \lor x_9 \lor x_{12}$	$x_7 \lor x_8 \lor x_{13}$	$x_7 \lor x_9 \lor x_{14}$	$x_8 \lor x_9 \lor x_{15}$
$x_{10} \lor x_{11} \lor x_{13}$	$x_{10} \lor x_{12} \lor x_{14}$	$x_{11} \lor x_{12} \lor x_{15}$	$x_{13} \vee x_{14} \vee x_{15}$
$\overline{x_1} \lor \overline{x_2} \lor \overline{x_6}$	$\overline{x_1} \lor \overline{x_3} \lor \overline{x_7}$	$\overline{x_1} \lor \overline{x_4} \lor \overline{x_8}$	$\overline{x_1} \lor \overline{x_5} \lor \overline{x_9}$
$\overline{x_2} \lor \overline{x_3} \lor \overline{x_{10}}$	$\overline{x_2} \lor \overline{x_4} \lor \overline{x_{11}}$	$\overline{x_2} \lor \overline{x_5} \lor \overline{x_{12}}$	$\overline{x_3} \lor \overline{x_4} \lor \overline{x_{13}}$
$\overline{x_3} \lor \overline{x_5} \lor \overline{x_{14}}$	$\overline{x_4} \lor \overline{x_5} \lor \overline{x_{15}}$	$\overline{x_6} \lor \overline{x_7} \lor \overline{x_{10}}$	$\overline{x_6} \lor \overline{x_8} \lor \overline{x_{11}}$
$\overline{x_6} \lor \overline{x_9} \lor \overline{x_{12}}$	$\overline{x_7} \lor \overline{x_8} \lor \overline{x_{13}}$	$\overline{x_7} \lor \overline{x_9} \lor \overline{x_{14}}$	$\overline{x_8} \lor \overline{x_9} \lor \overline{x_{15}}$
$\overline{x_{10}} \lor \overline{x_{11}} \lor \overline{x_{13}}$	$\overline{x_{10}} \lor \overline{x_{12}} \lor \overline{x_{14}}$	$\overline{x_{11}} \lor \overline{x_{12}} \lor \overline{x_{15}}$	$\overline{x_{13}} \lor \overline{x_{14}} \lor \overline{x_{15}}$

Satisfiability

Example:

 $R(3,3) \leq 6$

In every party of six, either three of them are mutual friends, or three of them are mutual strangers.

Part I

PROPOSITIONAL PROOF COMPLEXITY

Definition:

A proof system for $A \subseteq \Sigma^*$ is a binary relation $R \subseteq \Sigma^* \times \Sigma^*$ s.t.:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$x \in A \Rightarrow \exists y \in \Sigma^* \ ((x,y) \in R),$$

•
$$x \notin A \Rightarrow \forall y \in \Sigma^* \ ((x, y) \notin R),$$

and

•
$$(x, y) \stackrel{?}{\in} R$$
 decidable in time $poly(|x| + |y|)$.

Terminology:

• If $(x, y) \in R$, then y is an *R*-proof that $x \in A$,

Terminology:

- If $(x, y) \in R$, then y is an *R*-proof that $x \in A$,
- For x in A, let $c_R(x) = \min\{|y| : y \text{ is an } R \text{-proof that } x \in A\}.$

Terminology:

- If $(x, y) \in R$, then y is an *R*-proof that $x \in A$,
- For x in A, let $c_R(x) = \min\{|y| : y \text{ is an } R \text{-proof that } x \in A\}.$

Definition:

A proof system R for A is polynomially-bounded if

 $c_R(x) \leq \text{poly}(|x|),$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for $x \in A$.

Definition:

Given proof systems R_1 and R_2 for A,

 $R_1 \leq^{p} R_2$

if there exist f computable in polynomial-time such that:

$$(x,y) \in R_1 \Rightarrow (x,f(y)) \in R_2.$$

Resolution and Frege Proof Systems

Cut rule (Resolution):

$$\frac{A \lor C \qquad B \lor \overline{C}}{A \lor B}.$$

Resolution and Frege Proof Systems

Cut rule (Resolution):

$$\frac{A \lor C \qquad B \lor \overline{C}}{A \lor B}$$

Rest of rules of inference (Frege):

$$\frac{A}{A \vee \overline{A}} \qquad \frac{A}{A \vee B} \qquad \frac{A \vee C \quad B \vee D}{A \vee B \vee (C \wedge D)}.$$

Resolution and Frege Proof Systems

Cut rule (Resolution):

$$\frac{A \lor C \qquad B \lor \overline{C}}{A \lor B}$$

Rest of rules of inference (Frege):

$$\frac{A}{A \vee \overline{A}} \qquad \frac{A}{A \vee B} \qquad \frac{A \vee C \quad B \vee D}{A \vee B \vee (C \wedge D)}.$$

Proof that $C_1 \land \ldots \land C_m \in \text{UNSAT}$:

$$C_1,\ldots,C_m,F_1,\ldots,F_i,\ldots,F_j,\ldots,F_k,\ldots,\emptyset$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Frege (arbitrary formulas)

Resolution (clauses only)

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

Definition:

The proof search problem for a proof system R for A is:

Given $x \in A$, find some $y \in \Sigma^*$ (any $y \in \Sigma^*$) such that $(x, y) \in R$.

Definition:

The proof search problem for a proof system R for A is:

Given $x \in A$, find some $y \in \Sigma^*$ (any $y \in \Sigma^*$) such that $(x, y) \in R$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition [Bonet-Pitassi-Raz]: A proof system *R* for *A* is automatizable if the proof search problem for *R* is solvable in time $poly(|x| + c_R(x))$.

Definition

The weak proof search problem for a proof system R for A is:

Given
$$x \in \Sigma^*$$
 and a size parameter $s \in \mathbb{N}$,
if $c_P(x) \leq s$, say YES,
if $c_P(x) = \infty$, say NO.

Definition

The weak proof search problem for a proof system R for A is:

Given
$$x \in \Sigma^*$$
 and a size parameter $s \in \mathbb{N}$,
if $c_P(x) \leq s$, say YES,
if $c_P(x) = \infty$, say NO.

Definition [Razborov] [Pudlak] A proof system *R* for *A* is weakly automatizable if the weak proof search problem for *R* is solvable in time poly(|x| + s).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorems [Bonet-Pitassi-Raz] [Alekhnovich-Razborov]

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆ ⊙へ⊙

- 1. Weak automatizability of Frege is crypto-hard.
- 2. Automatizability of Resolution is W[P]-hard.

Part II

MEAN-PAYOFF STOCHASTIC GAMES

Mean-payoff games

・ロト ・聞ト ・ヨト ・ヨト

- 20

Box: player max. Diamond: player min. Circle: random (nature).

Mean-payoff stochastic games

A mean-payoff stochastic game is given by:

• Game graph G = (V, E): finite directed graph.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Partition: $V = V_{\max} \cup V_{\min} \cup V_{avg}$.
- Weights on edges: $w : E \to \mathbb{Z}$.

A mean-payoff stochastic game is given by:

- Game graph G = (V, E): finite directed graph.
- Partition: $V = V_{\max} \cup V_{\min} \cup V_{avg}$.
- Weights on edges: $w : E \to \mathbb{Z}$.

Goals of players:

$$\frac{\max}{\min \mathbb{E}\left[\lim_{t\to\infty}\frac{1}{t}\sum_{i=0}^{t}w(v_{i-1},v_{i})\right]}$$

(simplifying issues: lim vs. lim sup or lim inf, measurability, etc.).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Four types of games

Mean-payoff stochastic games [Shapley 1953]:

No restrictions.

Simple stochastic games [Condon]:

All weights are 0 except at one +1-sink and one -1-sink.

Mean-payoff games [Ehrenfeucht-Mycielski]:

There are no random nodes.

Parity games [Emerson-Jutla]:

There are no random nodes and all weights outgoing node *i* are $(-1)^i \cdot (|V|+1)^i$.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Complexity of the games

Definition The MPSG-problem is:

> Given a game graph, does player max have a strategy securing value ≥ 0 ?

> > ◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Complexity of the games

Definition The MPSG-problem is:

> Given a game graph, does player max have a strategy securing value ≥ 0 ?

> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem [C, EM, EJ, Zwick-Paterson]

- 1. PG \leq_m^p MPG \leq_m^p SSG \leq_m^p MPSG.
- 2. All four versions are in NP \cap co-NP.

Complexity of the games

Definition The MPSG-problem is:

> Given a game graph, does player max have a strategy securing value ≥ 0 ?

Theorem [C, EM, EJ, Zwick-Paterson]

- 1. PG \leq_m^p MPG \leq_m^p SSG \leq_m^p MPSG.
- 2. All four versions are in NP \cap co-NP.

Open problems

Membership in P is unknown. Any kind of hardness is unknown.

```
Theorem [A.-Maneva]
There is a polynomial time algorithm
```

```
MPG instance G \mapsto \text{CNF} formula F
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

so that:

- 1. If max wins G, then F is satisfiable.
- 2. If min wins G, then F has poly-size Σ_2 -refutation.

Part III

BOUNDED-WIDTH RESOLUTION

Bounded-width resolution

Definition

- 1. The width of a clause is its number of literals.
- 2. The width of a refutation is the width of its widest clause.
Bounded-width resolution

Definition

- 1. The width of a clause is its number of literals.
- 2. The width of a refutation is the width of its widest clause.

Facts

- 1. The number of clauses of width at most k is $O(n^k)$.
- 2. If F has a refutation of width k, then it has one of size $O(n^k)$.

Facts

- 1. Width-2 resolution is complete for 2CNFs.
- 2. Width-k resolution is complete for CNFs of tree-width < k.
- 3. Bounded-width resolution simulates typical constraint propagation techniques.

Some structure

Theorem [Ben-Sasson-Wigderson]

If an *n*-variable 3-CNF formula has a resolution refutation of size *s*, then it also has one of width $O(\sqrt{n \log s})$.

Some structure

Theorem [Ben-Sasson-Wigderson]

If an *n*-variable 3-CNF formula has a resolution refutation of size *s*, then it also has one of width $O(\sqrt{n \log s})$.

Corollary

The proof-search problem for resolution for *n*-variable 3CNFs can be solved in time $n^{O(\sqrt{n \log s})}$, where *s* is the smallest refutation-size.

Note:

If s = poly(n), this is subexponential of type $2^{n^{0.51}}$

Bounded-width proofs and SAT-solving

Question:

How do state-of-the-art SAT-solvers compare to bounded-width?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Bounded-width proofs and SAT-solving

Question:

How do state-of-the-art SAT-solvers compare to bounded-width?

Rest of this section [A.-Fichte-Thurley]

If CDCL is allowed enough random decisions and restarts, then it simulates width-k resolution in time $O(n^{2k})$ w.h.p.

CDCL Algorithms

Algorithm A:

Let α be the empty list

```
DEFAULT:

if \alpha satisfies F: return YES

if \alpha falsifies F: go to CONFLICT

if F|_{\alpha} contains a unit-clause: go to UNIT

go to DECIDE
```

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

CDCL Algorithms

Algorithm A:

Let α be the empty list

```
DEFAULT:

if \alpha satisfies F: return YES

if \alpha falsifies F: go to CONFLICT

if F|_{\alpha} contains a unit-clause: go to UNIT

go to DECIDE
```

UNIT:

choose unit-clause x^a in $F|_{\alpha}$ append x = a to α , go to DEFAULT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CDCL Algorithms

Algorithm A:

Let α be the empty list

```
DEFAULT:

if \alpha satisfies F: return YES

if \alpha falsifies F: go to CONFLICT

if F|_{\alpha} contains a unit-clause: go to UNIT

go to DECIDE
```

UNIT:

choose unit-clause x^a in $F|_{\alpha}$ append x = a to α , go to DEFAULT

DECIDE:

choose x in $V \setminus Dom(\alpha)$ and a in $\{0, 1\}$ append $x \stackrel{d}{=} a$ to α , go to DEFAULT

Algorithm A:

CONFLICT: add new C to F with $F \models C$ and $C|_{\alpha} = \emptyset$ if C is the empty clause: return NO remove assignments from the tail of α while $C|_{\alpha} = \emptyset$ go to DEFAULT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How is the new clause found?

Example:

$$F = a \wedge (\bar{a} \lor \bar{b} \lor c) \land (\bar{c} \lor \bar{d}) \land (\bar{a} \lor \bar{c} \lor d)$$

UNIT:	a = 1	due to <i>a</i>
DECIDE:	$b\stackrel{\scriptscriptstyle \mathrm{d}}{=}1$	choice
UNIT:	c = 1	due to \bar{a}
UNIT:	d = 0	due to \bar{c}
CONFLICT:		due to ā

 $b \ \overline{a} \lor \overline{b} \lor c$ $c \ \overline{c} \lor \overline{d}$ $\overline{a} \vee \overline{c} \vee d$.

・ロト ・聞ト ・ヨト ・ヨト

æ

Add (or learn) \overline{b} .

How is the new clause found?

Cuts in a conflict graph:

Algorithm A:

CONFLICT:

add new C to F with $F\models C$ and $C|_lpha=\emptyset$

if C is the empty clause: return NO

choose whether to restart (with current *F*) or continue remove assignments from the tail of α while $C|_{\alpha} = \emptyset$ go to DEFAULT

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm A:

CONFLICT: add new C to F with $F \models C$ and $C|_{\alpha} = \emptyset$ if C is the empty clause: return NO restart (with current F)

Choice strategy under analysis

Learning scheme:

- Any asserting scheme [Marques-Silva-Sakallah].
- Particular case: DECISION scheme, 1UIP scheme, etc.

Restart policy:

- Any policy that allows any controlled number of conflicts between restarts.
- Particular case: restart at every conflict.

Decision strategy:

- Any strategy that allows a controlled number of rounds of arbitrary decisions between rounds of totally random ones.
- Particular case: totally random decisions all the time.

A round is a sequence

UNIT*(, DECIDE, UNIT*)*

where each UNIT* is maximal.

A round is a sequence

```
UNIT*(, DECIDE, UNIT*)*
```

where each UNIT* is maximal.

A conclusive round is one where CONFLICT would be next.

A round is a sequence

```
UNIT*(, DECIDE, UNIT*)*
```

where each UNIT* is maximal.

A conclusive round is one where CONFLICT would be next. An inconclusive round is one where CONFLICT would not be next.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → のへで

Clause absorption

Let F be a set of clauses.

Let C be a clause.

Let R be an inconclusive round started with F.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Let F be a set of clauses.

Let C be a clause.

Let R be an inconclusive round started with F.

Fact If C belongs to F and R falsifies all literals of C but one, then R satisfies the remaining one.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Let F be a set of clauses. Let C be a clause.

Let R be an inconclusive round started with F.

Fact If C belongs to F and R falsifies all literals of C but one, then R satisfies the remaining one.

Definition

F absorbs C if every inconclusive round that falsifies all literals of C but one, satisfies the remaining one.

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

Note: *F* absorbs $a \lor c$. Why?

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Note: *F* absorbs $a \lor c$. Why? a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

Note: *F* absorbs $a \lor c$. Why? a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT; c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note: *F* absorbs $a \lor c$. Why? a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT; c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: *F* does not absorb $\overline{b} \lor d \lor e$. Why?

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Note: *F* absorbs $a \lor c$. Why? a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT; c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: *F* does not absorb $\overline{b} \lor d \lor e$. Why? Look at the inconclusive round $e \stackrel{d}{=} 0, d \stackrel{d}{=} 0$.

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

Note: *F* absorbs $a \lor c$. Why? a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT; c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: *F* does not absorb $\overline{b} \lor d \lor e$. Why? Look at the inconclusive round $e \stackrel{d}{=} 0, d \stackrel{d}{=} 0$.

Note: Both $F \models a \lor c$ and $F \models \overline{b} \lor d \lor e$. Why?

Let

$$F = (a \lor \overline{b}) \land (b \lor c) \land (\overline{a} \lor \overline{b} \lor d \lor e).$$

Note: *F* absorbs $a \lor c$. Why? a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT; c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: *F* does not absorb $\overline{b} \lor d \lor e$. Why? Look at the inconclusive round $e \stackrel{d}{=} 0, d \stackrel{d}{=} 0$.

Note: Both $F \models a \lor c$ and $F \models \overline{b} \lor d \lor e$. Why? Resolve 1st and 2nd, and 1st and 3rd, respectively.

Key properties of absorption

Logical consequence: If *F* absorbs *C*, then $F \models C$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Logical consequence: If *F* absorbs *C*, then $F \models C$.

Contradiction:

If F absorbs x and $\neg x$,

then any round started with F yields a conflict without decisions.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Logical consequence: If *F* absorbs *C*, then $F \models C$.

Contradiction:

If F absorbs x and $\neg x$,

then any round started with F yields a conflict without decisions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Monotonicity:

- if $C \in F$, then F absorbs C,
- if $F \subseteq G$ and F absorbs C, then G absorbs C,
- if $C \subseteq D$ and F absorbs C, then F absorbs D.

Non-absorbed resolvents

Let F be a CNF-formula with n variables.

Let $\frac{A}{C}$ be a valid resolution inference; C non-empty.

Non-absorbed resolvents

Let *F* be a CNF-formula with *n* variables. Let $\frac{A - B}{C}$ be a valid resolution inference; *C* non-empty.

Lemma (for DECISION learning scheme) If F absorbs A and B, but not C, then there exists a round R started with F such that:

1. R is conclusive and learns a clause C' with $C' \subseteq C$,

2. R makes at most |C| decisions.

Non-absorbed resolvents

Let *F* be a CNF-formula with *n* variables. Let $\frac{A - B}{C}$ be a valid resolution inference; *C* non-empty.

Lemma (for DECISION learning scheme) If F absorbs A and B, but not C, then there exists a round R started with F such that:

- 1. R is conclusive and learns a clause C' with $C' \subseteq C$,
- 2. R makes at most |C| decisions.

Interpretation of 1:

When *R* happens, *C* becomes absorbed.

Intrepretation of 2:

R has probability
$$\Omega\left(\frac{1}{(2n)^{|\mathcal{C}|}}\right)$$
 of happening.

Theorem (A.-Fichte-Thurley)

If F has a resolution refutation of width k, then the algorithm learns the empty clause after $O(n^{2k})$ restarts, with probability at least 0.99.

Theorem (AFT, Pipatsriwasat-Darwiche)

If F has a resolution refutation of length m, then there exist choices to learn the empty clause after O(m)restarts.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Part IV

BOUNDED-DEGREE SEMI-ALGEBRAIC PROOFS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○
Linear Programming

Formulation:

$$\begin{array}{ll} \min & c_1 x_1 + \dots + c_n x_n \\ \text{s.t.} & a_{11} x_1 + \dots + a_{1n} x_n \geq b_1 \\ & \vdots \\ & a_{m1} x_1 + \dots + a_{mn} x_n \geq b_m \\ & x_1, \dots, x_n \in \mathbb{R} \end{array}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Linear Programming

Formulation:

$$\begin{array}{ll} \min & c_1 x_1 + \dots + c_n x_n \\ \text{s.t.} & a_{11} x_1 + \dots + a_{1n} x_n \geq b_1 \\ & \vdots \\ & a_{m1} x_1 + \dots + a_{mn} x_n \geq b_m \\ & x_1, \dots, x_n \in \mathbb{R} \end{array}$$

Shorter form:

$$\begin{array}{ll} \min & c^{\mathrm{T}}x\\ \text{s.t.} & Ax \ge b\\ & x \in \mathbb{R}^n \end{array}$$

Proof of Optimality for LP

Duality theorem:

$$\begin{array}{lll} \min c^{\mathrm{T}}x & = & \max y^{\mathrm{T}}b \\ \mathrm{s.t.} & Ax \geq b & & \mathrm{s.t.} & y^{\mathrm{T}}A = c^{\mathrm{T}} \\ & x \in \mathbb{R}^n & & y \geq 0 \\ & & y \in \mathbb{R}^m \end{array}$$

Proof of Optimality for LP

Duality theorem:

$$\begin{array}{rcl} \min c^{\mathrm{T}}x & = & \max y^{\mathrm{T}}b \\ \mathrm{s.t.} & Ax \geq b & & \mathrm{s.t.} & y^{\mathrm{T}}A = c^{\mathrm{T}} \\ & x \in \mathbb{R}^n & & y \geq 0 \\ & & y \in \mathbb{R}^m \end{array}$$

Proof system version:

Use

$$\frac{a_i^{\mathrm{T}} x \ge b_i}{y_i a_i^{\mathrm{T}} x + y_j a_j^{\mathrm{T}} x \ge y_i b_i + y_j b_j} \quad [y_i \ge 0, y_j \ge 0]$$

to derive

 $y^{\mathrm{T}}Ax \geq y^{\mathrm{T}}b$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Adding Integrality 0-1 Constraints

Chvátal-Gomory cuts (cutting planes):

$$\frac{a_1x + \dots + a_nx \ge b}{a_1x + \dots + a_nx \ge \lceil b \rceil} \quad [a_1, \dots, a_n \in \mathbb{Z}]$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Adding Integrality 0-1 Constraints

Chvátal-Gomory cuts (cutting planes):

$$\frac{a_1x + \dots + a_nx \ge b}{a_1x + \dots + a_nx \ge \lceil b \rceil} \quad [a_1, \dots, a_n \in \mathbb{Z}]$$

Semi-algebraic proofs:

$$\overline{x_i \ge 0}$$
 $\overline{1-x_i \ge 0}$ $\overline{x_i^2-x_i \ge 0}$ $\overline{x_i-x_i^2 \ge 0}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Adding Integrality 0-1 Constraints

Chvátal-Gomory cuts (cutting planes):

$$\frac{a_1x + \dots + a_nx \ge b}{a_1x + \dots + a_nx \ge \lceil b \rceil} \quad [a_1, \dots, a_n \in \mathbb{Z}]$$

Semi-algebraic proofs:

$$\overline{x_i \ge 0} \quad \overline{1 - x_i \ge 0} \quad \overline{x_i^2 - x_i \ge 0} \quad \overline{x_i - x_i^2 \ge 0}$$
$$\frac{P \ge 0 \quad Q \ge 0}{\lambda P + \mu Q \ge 0} \quad \frac{P \ge 0 \quad Q \ge 0}{PQ \ge 0} \quad \frac{P^2 \ge 0}{P^2 \ge 0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lovász-Schrijver/Sherali-Adams lift-and-project methods:

$\overline{x_i \geq 0}$	$1-x_i \geq 0$	$x_i^2 - x_i \ge 0$	$x_i - x_i^2 \ge 0$
$\frac{P \ge 0 Q \ge 0}{\lambda P + \mu Q \ge 0}$	$\frac{P \ge 0}{P \cdot x_i \ge 0}$	$\frac{P \geq 0}{P \cdot (1 - x_i) \geq}$	$\overline{0}$ $\left(\frac{1}{P^2 \ge 0}\right)$

Bounded-rank/Bounded-degree Proofs

Definition:

- 1. Rank of an SA-proof is the maximum number of liftings in a path from the hypotheses to the conclusion.
- 2. Degree of an SA-proof is the maximum algebraic degree of any of its polynomials.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bounded-rank/Bounded-degree Proofs

Definition:

- 1. Rank of an SA-proof is the maximum number of liftings in a path from the hypotheses to the conclusion.
- 2. Degree of an SA-proof is the maximum algebraic degree of any of its polynomials.

Facts:

- 1. Existence of rank-k SA-refutations in time $n^{O(k)}$.
- 2. Degree-k SA simulates width-k resolution.
- 3. Degree-k SA simulates Gaussian elimination for k-XOR-SAT.

Gaussian Elimination for k-XOR-SAT

Main tool [Grigoriev-Hirsch-Pasechnik]:

If c is an integer and $L(x) = \sum_i a_i x_i$ with integer a_i , then

$$(L(x)-c)(L(x)-c+1)\geq 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ の < @

has short SA proofs of constant degree.

Gaussian Elimination for k-XOR-SAT

Main tool [Grigoriev-Hirsch-Pasechnik]:

If c is an integer and $L(x) = \sum_i a_i x_i$ with integer a_i , then

$$(L(x)-c)(L(x)-c+1)\geq 0$$

has short SA proofs of constant degree.

Expressing "evenness":

If $L(x) = \sum_{i} a_i x_i$ with integer a_i , then L(x) is even iff

$$\begin{array}{l} \left(\frac{1}{2}L(x) - M\right) \left(\frac{1}{2}L(x) - M + 1\right) \geq 0 \\ \left(\frac{1}{2}L(x) - M + 1\right) \left(\frac{1}{2}L(x) - M + 2\right) \geq 0 \\ \vdots \\ \left(\frac{1}{2}L(x) + M - 1\right) \left(\frac{1}{2}L(x) + M\right) \geq 0 \end{array}$$

for $M = \sum_{i} a_{i}$, an upper bound on $|\frac{1}{2}L(x)|$.

Hierarchy "width-restricted" proof systems

<□> <□> <□> <□> <=> <=> <=> <=> <<

Hierarchy "width-restricted" proof systems

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 連|||の��

Part V

CONCLUDING REMARKS

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Proof search problem for resolution and above:

At least as hard as parity games (a notorious > 20-year-old unsolved problem).

Bounded-width vs SAT-solvers:

Under mild conditions, CDCL algorithms behave (in principle) at least as good as bounded-width resolution.

Semi-Algebraic proof systems:

Interesting "new" algorithms for proof-search (LP-based). Surprising power of bounded-degree version (Gaussian elimination).