
The Proof-Search Problem
(between bdd-width resolution and
bdd-degree semi-algebraic proofs)

Albert Atserias
Universitat Politècnica de Catalunya

Barcelona, Spain



Satisfiability

Example:

15 variables and 40 clauses

x1 ∨ x2 ∨ x6 x1 ∨ x3 ∨ x7 x1 ∨ x4 ∨ x8 x1 ∨ x5 ∨ x9

x2 ∨ x3 ∨ x10 x2 ∨ x4 ∨ x11 x2 ∨ x5 ∨ x12 x3 ∨ x4 ∨ x13

x3 ∨ x5 ∨ x14 x4 ∨ x5 ∨ x15 x6 ∨ x7 ∨ x10 x6 ∨ x8 ∨ x11

x6 ∨ x9 ∨ x12 x7 ∨ x8 ∨ x13 x7 ∨ x9 ∨ x14 x8 ∨ x9 ∨ x15

x10 ∨ x11 ∨ x13 x10 ∨ x12 ∨ x14 x11 ∨ x12 ∨ x15 x13 ∨ x14 ∨ x15

x1 ∨ x2 ∨ x6 x1 ∨ x3 ∨ x7 x1 ∨ x4 ∨ x8 x1 ∨ x5 ∨ x9

x2 ∨ x3 ∨ x10 x2 ∨ x4 ∨ x11 x2 ∨ x5 ∨ x12 x3 ∨ x4 ∨ x13

x3 ∨ x5 ∨ x14 x4 ∨ x5 ∨ x15 x6 ∨ x7 ∨ x10 x6 ∨ x8 ∨ x11

x6 ∨ x9 ∨ x12 x7 ∨ x8 ∨ x13 x7 ∨ x9 ∨ x14 x8 ∨ x9 ∨ x15

x10 ∨ x11 ∨ x13 x10 ∨ x12 ∨ x14 x11 ∨ x12 ∨ x15 x13 ∨ x14 ∨ x15



Satisfiability

Example:

R(3, 3) ≤ 6

In every party of six,
either three of them are mutual friends,
or three of them are mutual strangers.



Part I

PROPOSITIONAL PROOF COMPLEXITY



Proof systems

Definition:
A proof system for A ⊆ Σ∗ is a binary relation R ⊆ Σ∗ × Σ∗ s.t.:

• x ∈ A ⇒ ∃y ∈ Σ∗ ((x , y) ∈ R),

• x 6∈ A ⇒ ∀y ∈ Σ∗ ((x , y) 6∈ R),

and

• (x , y)
?∈ R decidable in time poly(|x | + |y |).



Proof systems

Terminology:

• If (x , y) ∈ R , then y is an R-proof that x ∈ A,



Proof systems

Terminology:

• If (x , y) ∈ R , then y is an R-proof that x ∈ A,

• For x in A, let cR(x) = min{|y | : y is an R-proof that x ∈ A}.



Proof systems

Terminology:

• If (x , y) ∈ R , then y is an R-proof that x ∈ A,

• For x in A, let cR(x) = min{|y | : y is an R-proof that x ∈ A}.

Definition:
A proof system R for A is polynomially-bounded if

cR(x) ≤ poly(|x |),

for x ∈ A.



Polynomial simulation

Definition:
Given proof systems R1 and R2 for A,

R1 ≤p R2

if there exist f computable in polynomial-time such that:

(x , y) ∈ R1 ⇒ (x , f (y)) ∈ R2.



Resolution and Frege Proof Systems

Cut rule (Resolution):

A ∨ C B ∨ C

A ∨ B
.



Resolution and Frege Proof Systems

Cut rule (Resolution):

A ∨ C B ∨ C

A ∨ B
.

Rest of rules of inference (Frege):

A ∨ A

A

A ∨ B

A ∨ C B ∨ D

A ∨ B ∨ (C ∧ D)
.



Resolution and Frege Proof Systems

Cut rule (Resolution):

A ∨ C B ∨ C

A ∨ B
.

Rest of rules of inference (Frege):

A ∨ A

A

A ∨ B

A ∨ C B ∨ D

A ∨ B ∨ (C ∧ D)
.

Proof that C1 ∧ . . . ∧ Cm ∈ UNSAT:

C1, . . . ,Cm,F1, . . . ,Fi , . . . ,Fj , . . . ,Fk , . . . , ∅
?



Hierarchy of proof systems

Frege (arbitrary formulas)

6

Resolution (clauses only)

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�



Hierarchy of proof systems

Frege (arbitrary formulas)

Cutting planes

Resolution (clauses only)

6

6

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�



Hierarchy of proof systems

Frege (arbitrary formulas)

Cutting planes

Resolution (clauses only)

6

6

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�



Hierarchy of proof systems

Frege (arbitrary formulas)

Cutting planes

Resolution (clauses only)

6

6

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�

?NO poly bounded.
(unconditional)



Proof search

Definition:
The proof search problem for a proof system R for A is:

Given x ∈ A,
find some y ∈ Σ∗ (any y ∈ Σ∗)

such that (x , y) ∈ R .



Proof search

Definition:
The proof search problem for a proof system R for A is:

Given x ∈ A,
find some y ∈ Σ∗ (any y ∈ Σ∗)

such that (x , y) ∈ R .

Definition [Bonet-Pitassi-Raz]:
A proof system R for A is automatizable if the proof search
problem for R is solvable in time poly(|x | + cR(x)).



An easier task

Definition
The weak proof search problem for a proof system R for A is:

Given x ∈ Σ∗ and a size parameter s ∈ N,
if cP(x) ≤ s, say YES,
if cP (x) = ∞, say NO.



An easier task

Definition
The weak proof search problem for a proof system R for A is:

Given x ∈ Σ∗ and a size parameter s ∈ N,
if cP(x) ≤ s, say YES,
if cP (x) = ∞, say NO.

Definition [Razborov] [Pudlak]
A proof system R for A is weakly automatizable if the weak proof
search problem for R is solvable in time poly(|x | + s).



Some known results

Theorems [Bonet-Pitassi-Raz] [Alekhnovich-Razborov]

1. Weak automatizability of Frege is crypto-hard.

2. Automatizability of Resolution is W[P]-hard.



Status of the question

Frege

Cutting planes

Resolution

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�

6

6

6
NO weakly autom.
(crypto-hardness)

NO autom.
(W[P]-hardness)



Part II

MEAN-PAYOFF STOCHASTIC GAMES



Mean-payoff games

0

−2

−2

−1

2

0

2

−2

3

0

1

−1

1

0

−2 8

1
4

−1

4

2

Box: player max.
Diamond: player min.
Circle: random (nature).



Mean-payoff stochastic games

A mean-payoff stochastic game is given by:

• Game graph G = (V ,E ): finite directed graph.

• Partition: V = Vmax ∪ Vmin ∪ Vavg.

• Weights on edges: w : E → Z.



Mean-payoff stochastic games

A mean-payoff stochastic game is given by:

• Game graph G = (V ,E ): finite directed graph.

• Partition: V = Vmax ∪ Vmin ∪ Vavg.

• Weights on edges: w : E → Z.

Goals of players:

max/min E
[

limt→∞
1
t

∑t
i=0 w(vi−1, vi)

]

(simplifying issues: lim vs. lim sup or lim inf, measurability, etc.).



Four types of games

Mean-payoff stochastic games [Shapley 1953]:

No restrictions.

Simple stochastic games [Condon]:

All weights are 0 except at one +1-sink and one −1-sink.

Mean-payoff games [Ehrenfeucht-Mycielski]:

There are no random nodes.

Parity games [Emerson-Jutla]:

There are no random nodes and
all weights outgoing node i are (−1)i · (|V | + 1)i .



Complexity of the games

Definition
The MPSG-problem is:

Given a game graph,
does player max have a strategy

securing value ≥ 0?



Complexity of the games

Definition
The MPSG-problem is:

Given a game graph,
does player max have a strategy

securing value ≥ 0?

Theorem [C, EM, EJ, Zwick-Paterson]

1. PG ≤p
m MPG ≤p

m SSG ≤p
m MPSG.

2. All four versions are in NP ∩ co-NP.



Complexity of the games

Definition
The MPSG-problem is:

Given a game graph,
does player max have a strategy

securing value ≥ 0?

Theorem [C, EM, EJ, Zwick-Paterson]

1. PG ≤p
m MPG ≤p

m SSG ≤p
m MPSG.

2. All four versions are in NP ∩ co-NP.

Open problems

Membership in P is unknown.
Any kind of hardness is unknown.



Back to the proof-search problem

Theorem [A.-Maneva]
There is a polynomial time algorithm

MPG instance G 7→ CNF formula F

so that:

1. If max wins G , then F is satisfiable.

2. If min wins G , then F has poly-size Σ2-refutation.



Status of the question

Frege

Cutting planes

Resolution

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�

6

6

6
NO weakly autom.
(crypto-hardness)

���������
6
NO weakly autom.
(MPG-hardness)



Status of the question

Frege

Cutting planes

Resolution

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�

6

6

6
NO weakly autom.
(crypto-hardness)

���������
6
NO weakly autom.
(MPG-hardness)

���������
6
NO weakly autom.
(SSG-hardness)



Status of the question

Frege

Cutting planes

Resolution

NC1-Frege

TC0-Frege

AC0-Frege

...

Σ3-Frege

Σ2-Frege

Σ1-Frege

@
@

@
@

@
@

@
@@I

6

6

6

6

6
��������*

-�

-�

6

6

6
NO weakly autom.
(crypto-hardness)

���������
6
NO weakly autom.
(MPG-hardness)

���������
6
NO weakly autom.
(SSG-hardness)

6
NO weakly autom.
(PG-hardness)



Part III

BOUNDED-WIDTH RESOLUTION



Bounded-width resolution

Definition

1. The width of a clause is its number of literals.

2. The width of a refutation is the width of its widest clause.



Bounded-width resolution

Definition

1. The width of a clause is its number of literals.

2. The width of a refutation is the width of its widest clause.

Facts

1. The number of clauses of width at most k is O(nk).

2. If F has a refutation of width k, then it has one of size O(nk).

Facts

1. Width-2 resolution is complete for 2CNFs.

2. Width-k resolution is complete for CNFs of tree-width < k.

3. Bounded-width resolution simulates typical constraint
propagation techniques.



Some structure

Theorem [Ben-Sasson-Wigderson]
If an n-variable 3-CNF formula has a resolution refutation of size s,
then it also has one of width O(

√
n log s).



Some structure

Theorem [Ben-Sasson-Wigderson]
If an n-variable 3-CNF formula has a resolution refutation of size s,
then it also has one of width O(

√
n log s).

Corollary

The proof-search problem for resolution for n-variable 3CNFs
can be solved in time nO(

√
n log s),

where s is the smallest refutation-size.

Note:

If s = poly(n), this is subexponential of type 2n0.51



Bounded-width proofs and SAT-solving

Question:

How do state-of-the-art SAT-solvers compare to bounded-width?



Bounded-width proofs and SAT-solving

Question:

How do state-of-the-art SAT-solvers compare to bounded-width?

Rest of this section [A.-Fichte-Thurley]

If CDCL is allowed enough random decisions and restarts,
then it simulates width-k resolution in time O(n2k) w.h.p.



CDCL Algorithms

Algorithm A:

Let α be the empty list

DEFAULT:
if α satisfies F : return YES
if α falsifies F : go to CONFLICT
if F |α contains a unit-clause: go to UNIT
go to DECIDE



CDCL Algorithms

Algorithm A:

Let α be the empty list

DEFAULT:
if α satisfies F : return YES
if α falsifies F : go to CONFLICT
if F |α contains a unit-clause: go to UNIT
go to DECIDE

UNIT:
choose unit-clause xa in F |α
append x = a to α, go to DEFAULT



CDCL Algorithms

Algorithm A:

Let α be the empty list

DEFAULT:
if α satisfies F : return YES
if α falsifies F : go to CONFLICT
if F |α contains a unit-clause: go to UNIT
go to DECIDE

UNIT:
choose unit-clause xa in F |α
append x = a to α, go to DEFAULT

DECIDE:
choose x in V \ Dom(α) and a in {0, 1}
append x

d
= a to α, go to DEFAULT



CDCL Algorithms (continued)

Algorithm A:

CONFLICT:
add new C to F with F |= C and C |α = ∅
if C is the empty clause: return NO
remove assignments from the tail of α while C |α = ∅
go to DEFAULT



How is the new clause found?

Example:

F = a ∧ (ā ∨ b̄ ∨ c) ∧ (c̄ ∨ d̄) ∧ (ā ∨ c̄ ∨ d)

UNIT: a = 1 due to a

DECIDE: b
d
= 1 choice

UNIT: c = 1 due to ā ∨ b̄ ∨ c

UNIT: d = 0 due to c̄ ∨ d̄

CONFLICT: due to ā ∨ c̄ ∨ d .

ā ∨ c̄ ∨ d

c̄ ∨ d̄

ā ∨ b̄ ∨ c

a

ā ∨ c̄ ā ∨ b̄ b̄
-

XXXXz
-

XXXXXXXXXz
-

XXXXXXXXXXXXXXXz

Add (or learn) b̄.



How is the new clause found?

Cuts in a conflict graph:

O

a

b

c

!d

!e

f

!h

h



Add “occasional” restarts

Algorithm A:

CONFLICT:
add new C to F with F |= C and C |α = ∅
if C is the empty clause: return NO
choose whether to restart (with current F ) or continue
remove assignments from the tail of α while C |α = ∅
go to DEFAULT



Add “systematic” restarts

Algorithm A:

CONFLICT:
add new C to F with F |= C and C |α = ∅
if C is the empty clause: return NO
restart (with current F )



Choice strategy under analysis

Learning scheme:

• Any asserting scheme [Marques-Silva-Sakallah].

• Particular case: DECISION scheme, 1UIP scheme, etc.

Restart policy:

• Any policy that allows any controlled number of conflicts
between restarts.

• Particular case: restart at every conflict.

Decision strategy:

• Any strategy that allows a controlled number of rounds of
arbitrary decisions between rounds of totally random ones.

• Particular case: totally random decisions all the time.



Rounds of the algorithm

A round is a sequence

UNIT∗(,DECIDE,UNIT∗)∗

where each UNIT∗ is maximal.



Rounds of the algorithm

A round is a sequence

UNIT∗(,DECIDE,UNIT∗)∗

where each UNIT∗ is maximal.

A conclusive round is one where CONFLICT would be next.



Rounds of the algorithm

A round is a sequence

UNIT∗(,DECIDE,UNIT∗)∗

where each UNIT∗ is maximal.

A conclusive round is one where CONFLICT would be next.
An inconclusive round is one where CONFLICT would not be next.



Clause absorption

Let F be a set of clauses.
Let C be a clause.
Let R be an inconclusive round started with F .



Clause absorption

Let F be a set of clauses.
Let C be a clause.
Let R be an inconclusive round started with F .

Fact
If C belongs to F and R falsifies all literals of C but one,

then R satisfies the remaining one.



Clause absorption

Let F be a set of clauses.
Let C be a clause.
Let R be an inconclusive round started with F .

Fact
If C belongs to F and R falsifies all literals of C but one,

then R satisfies the remaining one.

Definition
F absorbs C if every inconclusive round that falsifies all literals of
C but one, satisfies the remaining one.



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?
a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?
a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;
c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?
a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;
c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: F does not absorb b̄ ∨ d ∨ e. Why?



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?
a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;
c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: F does not absorb b̄ ∨ d ∨ e. Why?

Look at the inconclusive round e
d
= 0, d

d
= 0.



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?
a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;
c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: F does not absorb b̄ ∨ d ∨ e. Why?

Look at the inconclusive round e
d
= 0, d

d
= 0.

Note: Both F |= a ∨ c and F |= b̄ ∨ d ∨ e. Why?



Example and non-example

Let
F = (a ∨ b̄) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ d ∨ e).

Note: F absorbs a ∨ c . Why?
a = 0 implies b = 0 and b = 0 implies c = 1, by UNIT;
c = 0 implies b = 1 and b = 1 implies a = 1, by UNIT.

Note: F does not absorb b̄ ∨ d ∨ e. Why?

Look at the inconclusive round e
d
= 0, d

d
= 0.

Note: Both F |= a ∨ c and F |= b̄ ∨ d ∨ e. Why?
Resolve 1st and 2nd, and 1st and 3rd, respectively.



Key properties of absorption

Logical consequence:
If F absorbs C , then F |= C .



Key properties of absorption

Logical consequence:
If F absorbs C , then F |= C .

Contradiction:
If F absorbs x and ¬x ,
then any round started with F yields a conflict without decisions.



Key properties of absorption

Logical consequence:
If F absorbs C , then F |= C .

Contradiction:
If F absorbs x and ¬x ,
then any round started with F yields a conflict without decisions.

Monotonicity:

• if C ∈ F , then F absorbs C ,

• if F ⊆ G and F absorbs C , then G absorbs C ,

• if C ⊆ D and F absorbs C , then F absorbs D.



Non-absorbed resolvents

Let F be a CNF-formula with n variables.
Let A B

C
be a valid resolution inference; C non-empty.



Non-absorbed resolvents

Let F be a CNF-formula with n variables.
Let A B

C
be a valid resolution inference; C non-empty.

Lemma (for DECISION learning scheme)

If F absorbs A and B, but not C,

then there exists a round R started with F such that:

1. R is conclusive and learns a clause C ′ with C ′ ⊆ C,

2. R makes at most |C | decisions.



Non-absorbed resolvents

Let F be a CNF-formula with n variables.
Let A B

C
be a valid resolution inference; C non-empty.

Lemma (for DECISION learning scheme)

If F absorbs A and B, but not C,

then there exists a round R started with F such that:

1. R is conclusive and learns a clause C ′ with C ′ ⊆ C,

2. R makes at most |C | decisions.

Interpretation of 1:

When R happens, C becomes absorbed.

Intrepretation of 2:

R has probability Ω
(

1
(2n)|C |

)

of happening.



Bottom-line (for DECISION scheme only)

Theorem (A.-Fichte-Thurley)

If F has a resolution refutation of width k,

then the algorithm learns the empty clause after O(n2k) restarts,

with probability at least 0.99.

Theorem (AFT, Pipatsriwasat-Darwiche)

If F has a resolution refutation of length m,

then there exist choices to learn the empty clause after O(m)
restarts.



Part IV

BOUNDED-DEGREE SEMI-ALGEBRAIC PROOFS



Linear Programming

Formulation:

min c1x1 + · · · + cnxn

s.t. a11x1 + · · · + a1nxn ≥ b1
...

am1x1 + · · · + amnxn ≥ bm

x1, . . . , xn ∈ R



Linear Programming

Formulation:

min c1x1 + · · · + cnxn

s.t. a11x1 + · · · + a1nxn ≥ b1
...

am1x1 + · · · + amnxn ≥ bm

x1, . . . , xn ∈ R

Shorter form:

min cTx

s.t. Ax ≥ b

x ∈ R
n



Proof of Optimality for LP

Duality theorem:

min cTx = max yTb

s.t. Ax ≥ b s.t. yTA = cT

x ∈ R
n y ≥ 0

y ∈ R
m



Proof of Optimality for LP

Duality theorem:

min cTx = max yTb

s.t. Ax ≥ b s.t. yTA = cT

x ∈ R
n y ≥ 0

y ∈ R
m

Proof system version:

Use
aT
i x ≥ bi aT

j x ≥ bj

yia
T
i x + yja

T
j x ≥ yibi + yjbj

[yi ≥ 0, yj ≥ 0]

to derive
yTAx ≥ yTb



Adding Integrality 0-1 Constraints

Chvátal-Gomory cuts (cutting planes):

a1x + · · · + anx ≥ b

a1x + · · · + anx ≥ ⌈b⌉ [a1, . . . , an ∈ Z]



Adding Integrality 0-1 Constraints

Chvátal-Gomory cuts (cutting planes):

a1x + · · · + anx ≥ b

a1x + · · · + anx ≥ ⌈b⌉ [a1, . . . , an ∈ Z]

Semi-algebraic proofs:

xi ≥ 0 1 − xi ≥ 0 x2
i − xi ≥ 0 xi − x2

i ≥ 0



Adding Integrality 0-1 Constraints

Chvátal-Gomory cuts (cutting planes):

a1x + · · · + anx ≥ b

a1x + · · · + anx ≥ ⌈b⌉ [a1, . . . , an ∈ Z]

Semi-algebraic proofs:

xi ≥ 0 1 − xi ≥ 0 x2
i − xi ≥ 0 xi − x2

i ≥ 0

P ≥ 0 Q ≥ 0

λP + µQ ≥ 0

P ≥ 0 Q ≥ 0

PQ ≥ 0 P2 ≥ 0



Lift and Project Methods

Lovász-Schrijver/Sherali-Adams lift-and-project methods:

xi ≥ 0 1 − xi ≥ 0 x2
i − xi ≥ 0 xi − x2

i ≥ 0

P ≥ 0 Q ≥ 0

λP + µQ ≥ 0

P ≥ 0

P · xi ≥ 0

P ≥ 0

P · (1 − xi ) ≥ 0

(

P2 ≥ 0

)



Bounded-rank/Bounded-degree Proofs

Definition:

1. Rank of an SA-proof is the maximum number of liftings in a
path from the hypotheses to the conclusion.

2. Degree of an SA-proof is the maximum algebraic degree of
any of its polynomials.



Bounded-rank/Bounded-degree Proofs

Definition:

1. Rank of an SA-proof is the maximum number of liftings in a
path from the hypotheses to the conclusion.

2. Degree of an SA-proof is the maximum algebraic degree of
any of its polynomials.

Facts:

1. Existence of rank-k SA-refutations in time nO(k).

2. Degree-k SA simulates width-k resolution.

3. Degree-k SA simulates Gaussian elimination for k-XOR-SAT.



Gaussian Elimination for k-XOR-SAT

Main tool [Grigoriev-Hirsch-Pasechnik]:

If c is an integer and L(x) =
∑

i aixi with integer ai , then

(L(x) − c)(L(x) − c + 1) ≥ 0

has short SA proofs of constant degree.



Gaussian Elimination for k-XOR-SAT

Main tool [Grigoriev-Hirsch-Pasechnik]:

If c is an integer and L(x) =
∑

i aixi with integer ai , then

(L(x) − c)(L(x) − c + 1) ≥ 0

has short SA proofs of constant degree.

Expressing “evenness”:

If L(x) =
∑

i aixi with integer ai , then L(x) is even iff

(

1
2L(x) − M

) (

1
2L(x) − M + 1

)

≥ 0
(

1
2L(x) − M + 1

) (

1
2L(x) − M + 2

)

≥ 0

...
(

1
2L(x) + M − 1

) (

1
2L(x) + M

)

≥ 0

for M =
∑

i ai , an upper bound on |12L(x)|.



Hierarchy “width-restricted” proof systems

Frege

Semi-Algebraic

Degree-k SA

Width-k Resolution Rank-k SA







�

J
J

JJ]

6

6



Hierarchy “width-restricted” proof systems

Frege

Semi-Algebraic

Degree-k SA

Width-k Resolution Rank-k SA







�

J
J

JJ]

6

6

?Time nO(k)

6

Simulates Gaussian
elimination for
for k-XOR-SAT



Part V

CONCLUDING REMARKS



Two-sentence summary

Proof search problem for resolution and above:

At least as hard as parity games
(a notorious > 20-year-old unsolved problem).

Bounded-width vs SAT-solvers:

Under mild conditions, CDCL algorithms behave (in principle)
at least as good as bounded-width resolution.

Semi-Algebraic proof systems:

Interesting “new” algorithms for proof-search (LP-based).
Surprising power of bounded-degree version (Gaussian elimination).


