The Proof-Search Problem

(between bdd-width resolution and
bdd-degree semi-algebraic proofs)

Albert Atserias
Universitat Politécnica de Catalunya
Barcelona, Spain



Satisfiability

Example:

x1 VX2V Xg
X2 V x3 V X190
x3V X5V X14
X6 V Xg V X12
x10 V x11 V X13
X1V X2V X
X2 V X3V X10
X3V X5 V X14
X6 V X9 V X12
X10 V X11 V X13

15 variables and 40 clauses
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X1V X5 V X9
X3V Xg V X13
X6 V Xg V X11
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X0 VX2V Xis X11VXxeVxis X3V XV Xis



Satisfiability

Example:

R(3,3) <6

In every party of six,
either three of them are mutual friends,
or three of them are mutual strangers.
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PROPOSITIONAL PROOF COMPLEXITY



Proof systems

Definition:

A proof system for A C X* is a binary relation R C 2* x ¥* s.t.
e xeA=3dyeX* ((x,y) €R),
e xZA=Vy eX® ((x,y) €R),

and

?
e (x,y) € R decidable in time poly(|x| + |y|).
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Proof systems

Terminology:

e If (x,y) € R, then y is an R-proof that x € A,
e For x in A, let cr(x) = min{|y| : y is an R-proof that x € A}.

Definition:
A proof system R for A is polynomially-bounded if

cr(x) < poly(|x]),

for x € A.



Polynomial simulation

Definition:
Given proof systems Ry and R, for A,

Ri <P Ry
if there exist f computable in polynomial-time such that:

(x,y) € Ri = (x,f(y)) € Ro.



Resolution and Frege Proof Systems

Cut rule (Resolution):
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Resolution and Frege Proof Systems

Cut rule (Resolution):

AV C Bv C
AV B '

Rest of rules of inference (Frege):

A Av C BvD
AV A AV B AVBV(CAD)’

Proof that (i A ... A C,, € UNSAT:

Ciooos G Fryeo Fi oo Fiyo Fiey 0
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Hierarchy of proof systems

NC'-Frege ==—————+  Frege (arbitrary formulas)

A
TCO Frege
? x NO poly bounded
oundeda.
ACO-Frege * (uncgcr)l itional)
2 3-Frege
Cutting planes
2 o-Frege T

A

Y ;-Frege > Resolution (clauses only)




Proof search

Definition:
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Proof search

Definition:
The proof search problem for a proof system R for A is:

Given x € A,
find some y € £* (any y € %)
such that (x,y) € R.

Definition [Bonet-Pitassi-Raz]:
A proof system R for A is automatizable if the proof search
problem for R is solvable in time poly(|x| 4+ cr(x)).
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Given x € ¥* and a size parameter s € N,
if cp(x) <'s, say YES,
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An easier task

Definition
The weak proof search problem for a proof system R for A is:

Given x € ¥* and a size parameter s € N,
if cp(x) <'s, say YES,
if cp(x) = o0, say NO.

Definition [Razborov| [Pudlak]
A proof system R for A is weakly automatizable if the weak proof
search problem for R is solvable in time poly(|x| + s).



Some known results

Theorems [Bonet-Pitassi-Raz] [Alekhnovich-Razborov]
1. Weak automatizability of Frege is crypto-hard.
2. Automatizability of Resolution is W|[P]-hard.



Status of the question

Frege

A
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MEAN-PAYOFF STOCHASTIC GAMES



Mean-payoff games

Box: player max.
Diamond: player min.
Circle: (nature).



Mean-payoff stochastic games

A mean-payoff stochastic game is given by:
e Game graph G = (V, E): finite directed graph.
e Partition: V' = Vipax U Vipin U Ve
e Weights on edges: w: E — Z.



Mean-payoff stochastic games

A mean-payoff stochastic game is given by:
e Game graph G = (V, E): finite directed graph.
e Partition: V' = Vipax U Vipin U Ve
e Weights on edges: w: E — Z.

Goals of players:
max/min E [Iimf_)OO % Z:?:O w(vi_1, V,-)]

(simplifying issues: lim vs. limsup or liminf, measurability, etc.).



Four types of games

Mean-payoff stochastic games [Shapley 1953]:

No restrictions.

Simple stochastic games [Condon]:

All weights are 0 except at one +1-sink and one —1-sink.

Mean-payoff games [Ehrenfeucht-Mycielski]:

There are no random nodes.

Parity games [Emerson-Jutla]:

There are no random nodes and '
all weights outgoing node i are (—1)" - (V| +1)".



Complexity of the games

Definition
The MPSG-problem is:

Given a game graph,
does player max have a strategy
securing value > 07
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Definition
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2. All four versions are in NP N co-NP.



Complexity of the games

Definition
The MPSG-problem is:

Given a game graph,
does player max have a strategy
securing value > 07

Theorem [C, EM, EJ, Zwick-Paterson]

1. PG <h, MPG <5h, SSG <h, MPSG.
2. All four versions are in NP N co-NP.

Open problems

Membership in P is unknown.
Any kind of hardness is unknown.



Back to the proof-search problem

Theorem [A.-Maneva]
There is a polynomial time algorithm

MPG instance G — CNF formula F

so that:
1. If max wins G, then F is satisfiable.

2. If min wins G, then F has poly-size ¥ -refutation.
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Frege

A
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BOUNDED-WIDTH RESOLUTION



Bounded-width resolution

Definition
1. The width of a clause is its number of literals.

2. The width of a refutation is the width of its widest clause.



Bounded-width resolution

Definition
1. The width of a clause is its number of literals.

2. The width of a refutation is the width of its widest clause.

Facts

1. The number of clauses of width at most k is O(n*).
2. If F has a refutation of width k, then it has one of size O(n).

Facts

1. Width-2 resolution is complete for 2CNFs.
2. Width-k resolution is complete for CNFs of tree-width < k.

3. Bounded-width resolution simulates typical constraint
propagation techniques.



Some structure

Theorem [Ben-Sasson-Wigderson|
If an n-variable 3-CNF formula has a resolution refutation of size s,
then it also has one of width O(y/nlogs).



Some structure

Theorem [Ben-Sasson-Wigderson|
If an n-variable 3-CNF formula has a resolution refutation of size s,
then it also has one of width O(y/nlogs).

Corollary

The proof-search problem for resolution for n-variable 3CNFs
can be solved in time n@(Vnlogs),
where s is the smallest refutation-size.

Note:

If s = poly(n), this is subexponential of type on!



Bounded-width proofs and SAT-solving

Question:

How do state-of-the-art SAT-solvers compare to bounded-width?



Bounded-width proofs and SAT-solving

Question:

How do state-of-the-art SAT-solvers compare to bounded-width?

Rest of this section [A.-Fichte-Thurley]

If CDCL is allowed enough random decisions and restarts,
then it simulates width-k resolution in time O(n?%) w.h.p.



CDCL Algorithms

Algorithm A:

Let o be the empty list

DEFAULT:
if o satisfies F: return YES
if « falsifies F: go to CONFLICT

if F|, contains a unit-clause: go to UNIT
go to DECIDE
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CDCL Algorithms

Algorithm A:

Let o be the empty list

DEFAULT:
if v satisfies F: return YES
if « falsifies F: go to CONFLICT
if F|, contains a unit-clause: go to UNIT
go to DECIDE

UNIT:
choose unit-clause x? in F|,

append x = a to «, go to DEFAULT

DECIDE:
choose x in V' \ Dom(«) and a in {0,1}
append x L atoa, go to DEFAULT



CDCL Algorithms (continued)

Algorithm A:

CONFLICT:
add new C to F with Fl=C and Cl, =10
if C is the empty clause: return NO

remove assignments from the tail of o while C|, =
go to DEFAULT



How is the new clause found?

Example:
F=aA(@VbVc)A(cVd)A(aVEVd)
UNIT: a=1 due to a
DECIDE: b<1 choice
UNIT: c=1 duetoé\/é\/c
UNIT: d=0 duetocVvd
CONFLICT: duetoavecVvd.
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Add (or learn) b.



How is the new clause found?

Cuts in a conflict graph:




Add “occasional” restarts

Algorithm A:

CONFLICT:
add new C to F with F = C and Cl|, =0
if C is the empty clause: return NO
choose whether to restart (with current F) or continue

remove assignments from the tail of a while C|, =
go to DEFAULT



Add “systematic” restarts

Algorithm A:

CONFLICT:
add new C to F with F = C and Cl|, =0
if C is the empty clause: return NO
restart (with current F)



Choice strategy under analysis

Learning scheme:
e Any asserting scheme [Marques-Silva-Sakallah].
e Particular case: DECISION scheme, 1UIP scheme, etc.

Restart policy:

e Any policy that allows any controlled number of conflicts
between restarts.

e Particular case: restart at every conflict.

Decision strategy:

e Any strategy that allows a controlled number of rounds of
arbitrary decisions between rounds of totally random ones.

e Particular case: totally random decisions all the time.



Rounds of the algorithm

A round is a sequence
UNIT*(, DECIDE, UNIT*)*

where each UNIT™ is maximal.
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Rounds of the algorithm

A round is a sequence
UNIT*(, DECIDE, UNIT*)*
where each UNIT™ is maximal.

A conclusive round is one where CONFLICT would be next.
An inconclusive round is one where CONFLICT would not be next.
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Clause absorption

Let F be a set of clauses.
Let C be a clause.
Let R be an inconclusive round started with F.

Fact
If C belongs to F and R falsifies all literals of C but one,
then R satisfies the remaining one.

Definition
F absorbs C if every inconclusive round that falsifies all literals of
C but one, satisfies the remaining one.
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Example and non-example

Let
F=(aVb)A(bVc)A(avbVvdVe).

Note: F absorbs aV c. Why?
a=0 implies b=0 and b= 0 implies c = 1, by UNIT;
¢ =0 implies b=1and b =1 implies a=1, by UNIT.

Note: F does not absorb bV d V e. Why?
Look at the inconclusive round e < 0,d <.

Note: Both F|=aVcand Fl=b VdVe Why?
Resolve 1st and 2nd, and 1st and 3rd, respectively.
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Key properties of absorption

Logical consequence:
If F absorbs C, then F = C.

Contradiction:
If F absorbs x and —x,
then any round started with F yields a conflict without decisions.

Monotonicity:

e if C € F, then F absorbs C,
e if FC G and F absorbs C, then G absorbs C,
e if C C D and F absorbs C, then F absorbs D.
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Let F be a CNF-formula with n variables.
Let % be a valid resolution inference; C non-empty.
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2. R makes at most |C| decisions.



Non-absorbed resolvents

Let F be a CNF-formula with n variables.
Let ACB be a valid resolution inference; C non-empty.

Lemma (for DECISION learning scheme)

If F absorbs A and B, but not C,
then there exists a round R started with F such that:

1. R is conclusive and learns a clause C' with C' C C,

2. R makes at most |C| decisions.

Interpretation of 1:
When R happens, C becomes absorbed.

Intrepretation of 2:

R has probability Q2 ((2 )‘C‘> of happening.



Bottom-line (for DECISION scheme only)

Theorem (A.-Fichte-Thurley)

If F has a resolution refutation of width k,
then the algorithm learns the empty clause after O(nK) restarts,
with probability at least 0.99.

Theorem (AFT, Pipatsriwasat-Darwiche)

If F has a resolution refutation of length m,

then there exist choices to learn the empty clause after O(m)
restarts.
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BOUNDED-DEGREE SEMI-ALGEBRAIC PROOFS



Linear Programming

Formulation:
min  c1xy + -+ + ChXy
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Linear Programming

Formulation:

min
s.t.

Shorter form:

min
s.t.

C1X1 + -+ ChXp
ayxy + -+ awnxy, > by

amix1 + -+ amnXn = bm
X1,...,%Xp ER

c'x
Ax > b
x e R"



Proof of Optimality for LP

Duality theorem:

T

min ¢+ x =

st. Ax>b
x e R"

max yThb

st. yTA=cT
y=>0
y eR™



Proof of Optimality for LP

Duality theorem:

min ¢Tx = max yTh
st. Ax> b st. yTA=cT
x € R" y>0
y eR™
Proof system version:
Use
a;FXZb; aJTXij [ -0 >0]
YiZ U,y =
viaix+yjalx > yibj+yb; 7' = 7
to derive

yTAx > yTb



Adding Integrality 0-1 Constraints

Chvatal-Gomory cuts (cutting planes):

aAx+---+ax>b
aix + -+ apx > [b]

[a1,...,an € Z]
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Adding Integrality 0-1 Constraints

Chvatal-Gomory cuts (cutting planes):

aAx+---+ax>b
aix + -+ apx > [b]

[a1,...,an € Z]

Semi-algebraic proofs:

x>0 1-x>0 x*—x>0 x—x*>0

f —

P>0 @>0 P>0 Q>0
AP+ Q>0 PQ >0 P2 >0




Lift and Project Methods

Lovasz-Schrijver/Sherali-Adams lift-and-project methods:

X,‘ZO ].—X,'ZO X2 X;ZO X,'—Xl-2>0

; —

P>0 Q>0 P>0 P>0
AP +u@Q@>0 P-x;>0 P-(1—x)>0 P2>0



Bounded-rank/Bounded-degree Proofs

Definition:
1. Rank of an SA-proof is the maximum number of liftings in a
path from the hypotheses to the conclusion.

2. Degree of an SA-proof is the maximum algebraic degree of
any of its polynomials.



Bounded-rank/Bounded-degree Proofs

Definition:
1. Rank of an SA-proof is the maximum number of liftings in a
path from the hypotheses to the conclusion.

2. Degree of an SA-proof is the maximum algebraic degree of
any of its polynomials.

Facts:
1. Existence of rank-k SA-refutations in time n©().
2. Degree-k SA simulates width-k resolution.
3. Degree-k SA simulates Gaussian elimination for k-XOR-SAT.



Gaussian Elimination for k-XOR-SAT

Main tool [Grigoriev-Hirsch-Pasechnik]:

If cis an integer and L(x) = >_; aix; with integer a;, then
(L(x) —c)(L(x)—c+1)>0

has short SA proofs of constant degree.



Gaussian Elimination for k-XOR-SAT

Main tool [Grigoriev-Hirsch-Pasechnik]:

If cis an integer and L(x) = >_; aix; with integer a;, then
(L(x) —c)(L(x)—c+1)>0
has short SA proofs of constant degree.

Expressing “evenness”:

If L(x) =), aix; with integer a;, then L(x) is even iff

(3L(x) = M) (AL(x) ~M +1) >0
(3L) =M +1) (3L(x) =M +2) >0

(%L(X) +M-1) (3L(x)+ M) >0

for M =3, a;, an upper bound on [1L(x)|.



Hierarchy “width-restricted” proof systems
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Hierarchy “width-restricted” proof systems

Frege

|

Semi-Algebraic

|

Degree-k SA Simulates Gaussian

elimination for

/ \ } for k-XOR-SAT
\

/

/ \ * Time nO(k)
Width-k Resolution Rank-k SA
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CONCLUDING REMARKS



Two-sentence summary

Proof search problem for resolution and above:

At least as hard as parity games
(a notorious > 20-year-old unsolved problem).

Bounded-width vs SAT-solvers:

Under mild conditions, CDCL algorithms behave (in principle)
at least as good as bounded-width resolution.

Semi-Algebraic proof systems:

Interesting “new” algorithms for proof-search (LP-based).
Surprising power of bounded-degree version (Gaussian elimination).



