Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction

Gilles Audemard
 Jean-Marie Lagniez and Laurent Simon

SAT 2013

Introduction and Motivations

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & x \vee w & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$The formula is inconsistant : Why?

- Minimal unsatisfiable subset of clauses

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & x \vee w & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

- The formula is inconsistant : Why ?
- Minimal unsatisfiable subset of clauses

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & x \vee w & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muser

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
& x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & x \vee w & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muser

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & x \vee w & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

- The formula is inconsistant: Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muSER

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & x \vee w & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

- The formula is inconsistant: Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muser

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & w \vee z \vee \neg y \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

UNSAT

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muSER

Minimum Unsatisfiable Subformula

$$
\begin{array}{lll}
x \vee y \vee z & x \vee \neg y & x \vee \neg z \\
\neg x \vee y \vee z & & \\
\neg x \vee \neg y & \neg x \vee \neg z & w \vee \neg x \vee \neg z
\end{array}
$$

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muser

Minimum Unsatisfiable Subformula

$$
\begin{array}{ll}
x \vee y \vee z & x \vee \neg y \\
\neg x \vee y \vee z & \\
\neg x \vee \neg y & \neg x \vee \neg z \\
& \text { MUS! }
\end{array}
$$

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
- Local search [Piette et al, ECAI 2006]
- Resolution based [Nadel, FMCAD 2010]
- Constructive or destructive [Belov etal, AI Com 2012]. The tool muser

Muser Architecture

Incremental SAT

- Successive calls to a SAT oracle
- Non independant calls
- Informations between two calls are preserved
- Heuristics : VSIDS, phase saving, restarts...
- Learnt clauses

Forget some clauses and some learnt clauses

- Add one selector (fresh variable) a_{i} per clause

$$
\begin{array}{lll}
a_{1} \vee x \vee y \vee z & a_{2} \vee x \vee \neg y & a_{3} \vee x \vee \neg z \\
a_{4} \vee \neg x \vee y \vee z & a_{5} \vee x \vee w & a_{6} \vee w \vee z \vee \neg y \\
a_{7} \vee \neg x \vee \neg y & a_{8} \vee \neg x \vee \neg z & a_{9} \vee w \vee \neg x \vee \neg z
\end{array}
$$

Assign a_{i} (as an assumption) to false to activate the clause i

- Assign a_{i} (as an assumption) to true to disable the clause i
- All learnt clauses related to a disable clause will be disabled!

Our work

MUS

Our work

Plug glucose in muser

- Adapt and modify GLUCOSE to improve MUSER performances

GLUCOSE and MUSER

Test set

300 instances from the SAT competition 2011, MUS category

- timeout set to 2400 seconds
- MUSER is used with default options (destructive approach, model rotation)

A first Attempt

Disappointing results

Trying to explain these bad results

Disappointing results

Disappointing results

Trying to explain these bad results

Comparable number of oracle calls

- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas

Disappointing results

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas
- GLUCOSE uses LBD for cleaning, restarts...
- Each assumption uses its own decision level

Disappointing results

- Each point represents an instance
- x-axis is the average number of initial variables in learnt clauses
- y-axis is the average number of selector variables in learnt clauses

Disappointing results

		LBD							
		size						LBD	
Instance	\#C	time	avg	max	avg	max			
fdmus_b21_96	8541	29	1145	5980	1095	5945			
longmult6	8853	46	694	3104	672	3013			
dump_vc950	360419	110	522	36309	498	35873			
g7n	70492	190	1098	16338	1049	16268			

- LBD looks like size
- Clauses are very long

Disappointing results

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas
- GLUCOSE uses LBD for cleaning, restarts...
- Each assumption uses its own decision level
- The LBD of a clause looks like its size !

Disappointing results

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas
- GLUCOSE uses LBD for cleaning, restarts...
- Each assumption uses its own decision level
- The LBD of a clause looks like its size !

> Refine LBD : Do not take into account selectors

A second attempt

New LBD

Instance	\#C time		LBD				New LBD				
			size		LBD		time	size		LBD	
			avg	max	avg	max		avg	max	avg	max
fdmus_b21_96	8541	29	1145	5980	1095	5945	11	972	6391	8	71
longmult6	8853	46	694	3104	672	3013	14	627	2997	11	61
dump_vc950	360419	110	522	36309	498	35873	67	1048	36491	8	307
g7n	70492	190	1098	16338	1049	16268	75	1729	17840	27	160

LBD matters

- However, results need to be improve

Clauses are too long

Many algorithms have to traverse clauses

- Dynamic computing of LBD (useful but costly)
- Conflict analysis
- Unit propagation

Deleting satisfiable clauses

Clauses are too long

Many algorithms have to traverse clauses

- Dynamic computing of LBD (useful but costly)
\rightarrow Store the number of selectors in the clause
\rightarrow Stop when all initial literals have been tested
- Conflict analysis
- Unit propagation
- Deleting satisfiable clauses

Clauses are too long

Many algorithms have to traverse clauses

- Dynamic computing of LBD (useful but costly)
\rightarrow Store the number of selectors in the clause
\rightarrow Stop when all initial literals have been tested
- Conflict analysis
\rightarrow Force initial literals to be placed at the beginning
- Unit propagation
- Deleting satisfiable clauses

Clauses are too long

Many algorithms have to traverse clauses

- Dynamic computing of LBD (useful but costly)
\rightarrow Store the number of selectors in the clause
\rightarrow Stop when all initial literals have been tested
- Conflict analysis
\rightarrow Force initial literals to be placed at the beginning
- Unit propagation
\rightarrow Look for a non selector literal or a satisfied one
\rightarrow Push selectors at the end of the clause
- Deleting satisfiable clauses

Clauses are too long

Many algorithms have to traverse clauses

- Dynamic computing of LBD (useful but costly)
\rightarrow Store the number of selectors in the clause
\rightarrow Stop when all initial literals have been tested
- Conflict analysis
\rightarrow Force initial literals to be placed at the beginning
- Unit propagation
\rightarrow Look for a non selector literal or a satisfied one
\rightarrow Push selectors at the end of the clause
- Deleting satisfiable clauses
\rightarrow Take only watched literals into account

Third attempt

Final comparison

Conclusion

Conclusion

- Adapt GLUCOSE to deal with selectors and assumptions
- Adapt the definition of LBD
- Modify algorithms dealing with long clauses
- Application to MUS extraction (using MUSER)
- Modify heuristics to take into account the semantic of selectors
- From a black box to a gray box SAT oracle
- Try other contexts : MAXSAT for example
- Suggested by Alexander Nadel : An incremental track in next competition...

