

Gilles Audemard Jean-Marie Lagniez and Laurent Simon

SAT 2013

Introduction and Motivations

$x \lor y \lor z$	$x \lor \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$	$X \vee W$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \vee \neg X \vee \neg Z$
	UNSAT	

$x \lor y \lor z$	$x \lor \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$	$x \lor w$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \lor \neg X \lor \neg Z$

- $x \lor y \lor z$ $x \lor \neg y$ $x \lor \neg z$ $\neg x \lor y \lor z$ $x \lor w$ $w \lor z \lor \neg y$ $\neg x \lor \neg y$ $\neg x \lor \neg z$ $w \lor \neg x \lor \neg z$

- The formula is inconsistant : Why ?
- Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

	$x \lor \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$	$X \vee W$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \vee \neg X \vee \neg Z$
	SAT	

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

$x \lor y \lor z$	$x \vee \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$	$X \lor W$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \lor \neg X \lor \neg Z$

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

$x \lor y \lor z$	$x \lor \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$	$X \lor W$	$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \vee \neg X \vee \neg Z$

	The	formula	is	inconsistant	:	Why?
--	-----	---------	----	--------------	---	------

- Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

$x \lor y \lor z$	$x \lor \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$		$w \lor z \lor \neg y$
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \vee \neg X \vee \neg Z$
	UNSAT	

- The formula is inconsistant : Why?
 - Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

$x \lor y \lor z$	$x \lor \neg y$	$X \vee \neg Z$
$\neg x \lor y \lor z$		
$\neg x \lor \neg y$	$\neg X \lor \neg Z$	$W \lor \neg X \lor \neg Z$
	UNSAT	

- The formula is inconsistant : Why?
 - Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

- The formula is inconsistant : Why?
- Minimal unsatisfiable subset of clauses
- Different approaches
 - Local search [Piette et al, ECAI 2006]
 - Resolution based [Nadel, FMCAD 2010]
 - Constructive or destructive [Belov etal, AI Com 2012]. The tool MUSER

Muser Architecture

Incremental SAT

- Successive calls to a SAT oracle
- Non independant calls
- Informations between two calls are preserved
 - Heuristics : VSIDS, phase saving, restarts...
 - Learnt clauses

Forget some clauses and some learnt clauses

$a_1 \lor x \lor y \lor z$	$a_2 \lor x \lor \neg y$	$a_3 \lor x \lor \neg z$
$a_4 \lor \neg x \lor y \lor z$	$a_5 \lor x \lor w$	$a_6 \lor w \lor z \lor \neg y$
$a_7 \lor \neg x \lor \neg y$	$a_8 \lor \neg x \lor \neg z$	$a_9 \lor w \lor \neg x \lor \neg z$

Assign a_i (as an assumption) to false to activate the clause i

- Assign a_i (as an assumption) to true to disable the clause i
- All learnt clauses related to a disable clause will be disabled !

Our work

Our work

Plug GLUCOSE in MUSER

Adapt and modify GLUCOSE to improve MUSER performances

Improve SAT oracle in order to improve the MUSER tool

Glucose and MUS

GLUCOSE and MUSER

timeout set to 2400 seconds

MUSER is used with default options (destructive approach, model rotation)

A first Attempt

SAT 2013

Trying to explain these bad results

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas

- GLUCOSE uses LBD for cleaning, restarts...
- Each assumption uses its own decision level

Conclusion

Disappointing results

- Each point represents an instance
- x-axis is the average number of initial variables in learnt clauses
- y-axis is the average number of selector variables in learnt clauses

Glucose and MUS

			LBD						
			S	ize	LE	3D			
Instance	#C	time	avg	max	avg	max			
fdmus_b21_96	8541	29	1145	5980	1095	5945			
longmult6	8853	46	694	3104	672	3013			
dump_vc950	360419	110	522	36309	498	35873			
g7n	70492	190	1098	16338	1049	16268			

LBD looks like size

Clauses are very long

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas

- GLUCOSE uses LBD for cleaning, restarts...
- Each assumption uses its own decision level
- The LBD of a clause looks like its size !

Trying to explain these bad results

- Comparable number of oracle calls
- Easy SAT calls (not shown in the paper)
- Difficult UNSAT ones
- GLUCOSE is supposed to be good on UNSAT formulas

- GLUCOSE uses LBD for cleaning, restarts...
- Each assumption uses its own decision level
- The LBD of a clause looks like its size !

Refine LBD : Do not take into account selectors

A second attempt

New LBD

			LBD						1	New LB	D	
			S	ize	L	BD	-		s	ize	LE	3D
Instance	#C	time	avg	max	avg	max		time	avg	max	avg	max
fdmus_b21_96	8541	29	1145	5980	1095	5945		11	972	6391	8	71
longmult6	8853	46	694	3104	672	3013		14	627	2997	11	61
dump_vc950	360419	110	522	36309	498	35873		67	1048	36491	8	307
g7n	70492	190	1098	16338	1049	16268		75	1729	17840	27	160

LBD matters

However, results need to be improve

Many algorithms have to traverse clauses

Conflict analysis

Unit propagation

Deleting satisfiable clauses

Many algorithms have to traverse clauses

- Dynamic computing of LBD (useful but costly)
 - → Store the number of selectors in the clause
 - → Stop when all initial literals have been tested
- Conflict analysis
- Unit propagation

Deleting satisfiable clauses

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)

- Store the number of selectors in the clause
- → Stop when all initial literals have been tested
- Conflict analysis
 - → Force initial literals to be placed at the beginning
- Unit propagation

Deleting satisfiable clauses

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)

- Store the number of selectors in the clause
- → Stop when all initial literals have been tested

Conflict analysis

- → Force initial literals to be placed at the beginning
- Unit propagation
 - → Look for a non selector literal or a satisfied one
 - → Push selectors at the end of the clause
 - Deleting satisfiable clauses

Many algorithms have to traverse clauses

Dynamic computing of LBD (useful but costly)

- Store the number of selectors in the clause
- → Stop when all initial literals have been tested

Conflict analysis

→ Force initial literals to be placed at the beginning

Unit propagation

- → Look for a non selector literal or a satisfied one
- → Push selectors at the end of the clause

Deleting satisfiable clauses

Take only watched literals into account

Third attempt

Final comparison

Conclusion

Glucose and MUS

Conclusion

Adapt GLUCOSE to deal with selectors and assumptions

- Adapt the definition of LBD
- Modify algorithms dealing with long clauses

Application to MUS extraction (using MUSER)

Modify heuristics to take into account the semantic of selectors

- From a black box to a gray box SAT oracle
- Try other contexts : MAXSAT for example
- Suggested by Alexander Nadel : An incremental track in next competition...