
Parallel MUS Extraction

Anton Belov1, Norbert Manthey2, and Joao Marques-Silva1,3

1Complex and Adaptive Systems Laboratory, University College Dublin, Ireland

2Institute of Artificial Intelligence, Technische Universität Dresden, Germany

3IST/INESC-ID, Lisbon, Portugal

SAT 2013
July 10, 2013

Helsinki, Finland

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 1

Minimal Unsatisfiable Subformulas (MUSes)

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(¬p ∨ r)

C4

(p ∨ q)

C5

(¬q ∨ ¬r)

C6

M = {C1,C2,C3} is UNSAT

, and ∀C ∈ M, M \ {C} is SAT.
F = {C1, . . . ,C6} is UNSAT, but not MU.

M is a minimal unsatisfiable subformula (MUS) of F .

Applications

Identification and repair of sources of inconsistency:

- circuit error diagnosis; error localization in product configuration

Identification of important/relevant features of systems:

- automatic abstraction in model checking
- environmental assumptions in formal equivalence checking

Complexity Decision: DP -complete. Function: ∈ FPNP

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 2

Minimal Unsatisfiable Subformulas (MUSes)

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(¬p ∨ r)

C4

(p ∨ q)

C5

(¬q ∨ ¬r)

C6

M = {C1,C2,C3} is UNSAT, and ∀C ∈ M, M \ {C} is SAT.

F = {C1, . . . ,C6} is UNSAT, but not MU.

M is a minimal unsatisfiable subformula (MUS) of F .

Applications

Identification and repair of sources of inconsistency:

- circuit error diagnosis; error localization in product configuration

Identification of important/relevant features of systems:

- automatic abstraction in model checking
- environmental assumptions in formal equivalence checking

Complexity Decision: DP -complete. Function: ∈ FPNP

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 2

Minimal Unsatisfiable Subformulas (MUSes)

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(¬p ∨ r)

C4

(p ∨ q)

C5

(¬q ∨ ¬r)

C6

M = {C1,C2,C3} is minimal unsatisfiable (MU) .

F = {C1, . . . ,C6} is UNSAT, but not MU.

M is a minimal unsatisfiable subformula (MUS) of F .

Applications

Identification and repair of sources of inconsistency:

- circuit error diagnosis; error localization in product configuration

Identification of important/relevant features of systems:

- automatic abstraction in model checking
- environmental assumptions in formal equivalence checking

Complexity Decision: DP -complete. Function: ∈ FPNP

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 2

Minimal Unsatisfiable Subformulas (MUSes)

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(¬p ∨ r)

C4

(p ∨ q)

C5

(¬q ∨ ¬r)

C6

M = {C1,C2,C3} is minimal unsatisfiable (MU) .

F = {C1, . . . ,C6} is UNSAT, but not MU.

M is a minimal unsatisfiable subformula (MUS) of F .

Applications

Identification and repair of sources of inconsistency:

- circuit error diagnosis; error localization in product configuration

Identification of important/relevant features of systems:

- automatic abstraction in model checking
- environmental assumptions in formal equivalence checking

Complexity Decision: DP -complete. Function: ∈ FPNP

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 2

Minimal Unsatisfiable Subformulas (MUSes)

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(¬p ∨ r)

C4

(p ∨ q)

C5

(¬q ∨ ¬r)

C6

M = {C1,C2,C3} is minimal unsatisfiable (MU) .

F = {C1, . . . ,C6} is UNSAT, but not MU.

M is a minimal unsatisfiable subformula (MUS) of F .

Applications

Identification and repair of sources of inconsistency:

- circuit error diagnosis; error localization in product configuration

Identification of important/relevant features of systems:

- automatic abstraction in model checking
- environmental assumptions in formal equivalence checking

Complexity Decision: DP -complete. Function: ∈ FPNP

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 2

Minimal Unsatisfiable Subformulas (MUSes)

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(¬p ∨ r)

C4

(p ∨ q)

C5

(¬q ∨ ¬r)

C6

M = {C1,C2,C3} is minimal unsatisfiable (MU) .

F = {C1, . . . ,C6} is UNSAT, but not MU.

M is a minimal unsatisfiable subformula (MUS) of F .

Applications

Identification and repair of sources of inconsistency:

- circuit error diagnosis; error localization in product configuration

Identification of important/relevant features of systems:

- automatic abstraction in model checking
- environmental assumptions in formal equivalence checking

Complexity Decision: DP -complete. Function: ∈ FPNP

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 2

MUS Extraction

Based on detection of necessary (or, transition) clauses:

I C ∈ F is necessary for F if F ∈ UNSAT and F \ {C} ∈ SAT.

I If C is necessary for F , then C is in every MUS of F .

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 3

MUS Extraction

Based on detection of necessary (or, transition) clauses:

I C ∈ F is necessary for F if F ∈ UNSAT and F \ {C} ∈ SAT.

I If C is necessary for F , then C is in every MUS of F .

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
st = SAT(Fw \ {C}) // Test if C is nec. for Fw

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← Fw \ {C}

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 3

MUS Extraction

Based on detection of necessary (or, transition) clauses:

I C ∈ F is necessary for F if F ∈ UNSAT and F \ {C} ∈ SAT.

I If C is necessary for F , then C is in every MUS of F .

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
(st,U, τ) = SAT(Fw \ {C}) // U - unsat. core, τ - model

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← U // Clause-set refinement: discard non-core clauses

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 3

MUS Extraction: opportunities for parallelization

1. Parallelize each SAT call

2. Parallelize the main loop, i.e. test multiple clauses

← this talk/paper

3. Parallel portfolio of MUS extractors

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
(st,U, τ) = SAT(Fw \ {C}) // U - unsat. core, τ - model

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← U // Clause-set refinement: discard non-core clauses

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 4

MUS Extraction: opportunities for parallelization

1. Parallelize each SAT call

2. Parallelize the main loop, i.e. test multiple clauses

← this talk/paper

3. Parallel portfolio of MUS extractors

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
(st,U, τ) = SAT(Fw \ {C}) // U - unsat. core, τ - model

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← U // Clause-set refinement: discard non-core clauses

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 4

MUS Extraction: opportunities for parallelization

1. Parallelize each SAT call

2. Parallelize the main loop, i.e. test multiple clauses

← this talk/paper

3. Parallel portfolio of MUS extractors

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
(st,U, τ) = SAT(Fw \ {C}) // U - unsat. core, τ - model

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← U // Clause-set refinement: discard non-core clauses

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 4

MUS Extraction: opportunities for parallelization

1. Parallelize each SAT call

2. Parallelize the main loop, i.e. test multiple clauses

← this talk/paper

3. Parallel portfolio of MUS extractors

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
(st,U, τ) = SAT(Fw \ {C}) // U - unsat. core, τ - model

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← U // Clause-set refinement: discard non-core clauses

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 4

MUS Extraction: opportunities for parallelization

1. Parallelize each SAT call

2. Parallelize the main loop, i.e. test multiple clauses ← this talk/paper

3. Parallel portfolio of MUS extractors

Input 7→ Output: F ∈ UNSAT 7→ M ∈ MUS(F)
〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do // Inv: M ⊆ F, and ∀C ∈ M is nec. for Fw

C ← PickClause(Fw)
(st,U, τ) = SAT(Fw \ {C}) // U - unsat. core, τ - model

if st = true then // If SAT, C is nec. for Fw

M ← M ∪ {C}
RMR(Fw ,M, τ) // Model rotation: find more nec. clauses

else
Fw ← U // Clause-set refinement: discard non-core clauses

return M // M ∈ MUS(F)

I Hybrid MUS extraction algorithm [Marques-Silva&Lynce’11]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 4

Parallelizing the main loop

〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do
{C1,C2} ← PickClauses(Fw)
(st1,U1, τ1) = SAT(Fw \ {C1}) || (st2,U2, τ2) = SAT(Fw \ {C2})
sleepUntilFinished() // Wait for both threads to finish

if st1 = true and st2 = true then
M ← M ∪ {C1,C2}
RMR(Fw ,M, τ1) ; RMR(Fw ,M, τ2)

else if st1 = true and st2 = false then
M ← M ∪ {C1}
RMR(Fw ,M, τ1) ; Fw ← U2

else if st1 = false and st2 = true then
M ← M ∪ {C2}
RMR(Fw ,M, τ2) ; Fw ← U1

else
Fw ← PickCore(U1,U2) // Pick one of the cores

return M // M ∈ MUS(F)
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 5

Parallelizing the main loop

〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do
{C1,C2} ← PickClauses(Fw)
(st1,U1, τ1) = SAT(Fw \ {C1}) || (st2,U2, τ2) = SAT(Fw \ {C2})
sleepUntilFinished() // Wait for both threads to finish

if st1 = true and st2 = true then
M ← M ∪ {C1,C2}
RMR(Fw ,M, τ1) ; RMR(Fw ,M, τ2)

else if st1 = true and st2 = false then
M ← M ∪ {C1}
RMR(Fw ,M, τ1) ; Fw ← U2

else if st1 = false and st2 = true then
M ← M ∪ {C2}
RMR(Fw ,M, τ2) ; Fw ← U1

else
Fw ← PickCore(U1,U2) // Pick one of the cores

return M // M ∈ MUS(F)
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 5

Parallelizing the main loop

〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do
{C1,C2} ← PickClauses(Fw)
(st1,U1, τ1) = SAT(Fw \ {C1}) || (st2,U2, τ2) = SAT(Fw \ {C2})
sleepUntilFinished() // Wait for both threads to finish

if st1 = true and st2 = true then
M ← M ∪ {C1,C2}
RMR(Fw ,M, τ1) ; RMR(Fw ,M, τ2)

else if st1 = true and st2 = false then
M ← M ∪ {C1}
RMR(Fw ,M, τ1) ; Fw ← U2

else if st1 = false and st2 = true then
M ← M ∪ {C2}
RMR(Fw ,M, τ2) ; Fw ← U1

else
Fw ← PickCore(U1,U2) // Pick one of the cores

return M // M ∈ MUS(F)
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 5

Parallelizing the main loop

〈Fw ,M〉 ← 〈F , ∅〉 // Working formula, MUS under-approx.

while M 6= Fw do
{C1,C2} ← PickClauses(Fw)
(st1,U1, τ1) = SAT(Fw \ {C1}) || (st2,U2, τ2) = SAT(Fw \ {C2})
sleepUntilFinished() // Wait for both threads to finish

if st1 = true and st2 = true then
M ← M ∪ {C1,C2}
RMR(Fw ,M, τ1) ; RMR(Fw ,M, τ2)

else if st1 = true and st2 = false then
M ← M ∪ {C1}
RMR(Fw ,M, τ1) ; Fw ← U2

else if st1 = false and st2 = true then
M ← M ∪ {C2}
RMR(Fw ,M, τ2) ; Fw ← U1

else
Fw ← PickCore(U1,U2) // Pick one of the cores

return M // M ∈ MUS(F)
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 5

Parallelizing the main loop

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time
(x) sequential 144 186.46

(y) parallel, 4 thr. 143 154.93

Shortcomings

(i) Threads are under-utilized because of synchronization.
(ii) No communication , i.e. exchange of learned clauses between threads.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 6

Parallelizing the main loop

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time
(x) sequential 144 186.46

(y) parallel, 4 thr. 143 154.93

Shortcomings

(i) Threads are under-utilized because of synchronization.
(ii) No communication , i.e. exchange of learned clauses between threads.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 6

Parallelizing the main loop: de-synchronizing

Technicalities
“Outdated” SAT outcomes are OK — if C is necessary for Fw , it is also
necessary for F ′

w ⊂ Fw .
“Outdated” UNSAT cores might be not — test if U ⊆ Fw , if not drop it.

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) parallel, 4 thr. 143 154.93
synchronous

(y) parallel, 4 thr. 146 126.45
asynchronous

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 7

Parallelizing the main loop: de-synchronizing

Technicalities
“Outdated” SAT outcomes are OK — if C is necessary for Fw , it is also
necessary for F ′

w ⊂ Fw .
“Outdated” UNSAT cores might be not — test if U ⊆ Fw , if not drop it.

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) parallel, 4 thr. 143 154.93
synchronous

(y) parallel, 4 thr. 146 126.45
asynchronous

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 7

Parallelizing the main loop: communication

Would like to exchange clauses between threads

Problem: threads work on different formulas → clauses learned by one
might be not valid for another.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3
F

Thread 1: solves SAT (F \ {C1}), derives (¬p).
Thread 2: works on SAT (F \ {C2}), receives (¬p), returns UNSAT.

Solution: assumption-based, incremental SAT [Eén, Sörensson, ENTCS 2003]

Note: most modern MUS extractors use assumption-based incremental SAT anyway.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 8

Parallelizing the main loop: communication

Would like to exchange clauses between threads

Problem: threads work on different formulas → clauses learned by one
might be not valid for another.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3
F

Thread 1: solves SAT (F \ {C1}), derives (¬p).
Thread 2: works on SAT (F \ {C2}), receives (¬p), returns UNSAT.

Solution: assumption-based, incremental SAT [Eén, Sörensson, ENTCS 2003]

Note: most modern MUS extractors use assumption-based incremental SAT anyway.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 8

Parallelizing the main loop: communication

Would like to exchange clauses between threads

Problem: threads work on different formulas → clauses learned by one
might be not valid for another.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3
F

Thread 1: solves SAT (F \ {C1}), derives (¬p).
Thread 2: works on SAT (F \ {C2}), receives (¬p), returns UNSAT.

Solution: assumption-based, incremental SAT [Eén, Sörensson, ENTCS 2003]

Note: most modern MUS extractors use assumption-based incremental SAT anyway.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 8

Assumption-based incremental SAT [Eén, Sörensson, ENTCS 2003]

SAT solver interface

add({C1, . . . ,Cn}) — add clauses C1, . . . ,Cn to the SAT solver.

solve({l1, . . . , lk}) — determine the satisfiability of the current set of
clauses under a partial assignment defined by literals {l1, . . . , lk}.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(p ∨ q)

C4
F

(a1 ∨ p)

C1

(a2 ∨ q)

C2

(a3 ∨ ¬p ∨ ¬q)

C3

(a4 ∨ p ∨ q)

C4
FA

To test F \ {C1}: add(FA); solve({a1,¬a2,¬a3,¬a4}) → SAT, model

To test F \ {C4}: add(FA); solve({¬a1,¬a2,¬a3, a4}) → UNSAT, core

Note: learned clauses are entailed by input clauses — can be exchanged.
To “remove” C4 from FA : add({ (a4) }).
To finalize C1 in FA : add({ (¬a1) }).
Note: there is another approach [Marques-Silva, Sakallah, FTCS 1997; Nadel, Ryvchin, SAT 2012]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 9

Assumption-based incremental SAT [Eén, Sörensson, ENTCS 2003]

SAT solver interface

add({C1, . . . ,Cn}) — add clauses C1, . . . ,Cn to the SAT solver.

solve({l1, . . . , lk}) — determine the satisfiability of the current set of
clauses under a partial assignment defined by literals {l1, . . . , lk}.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(p ∨ q)

C4
F

(a1 ∨ p)

C1

(a2 ∨ q)

C2

(a3 ∨ ¬p ∨ ¬q)

C3

(a4 ∨ p ∨ q)

C4
FA

To test F \ {C1}: add(FA); solve({a1,¬a2,¬a3,¬a4}) → SAT, model

To test F \ {C4}: add(FA); solve({¬a1,¬a2,¬a3, a4}) → UNSAT, core

Note: learned clauses are entailed by input clauses — can be exchanged.
To “remove” C4 from FA : add({ (a4) }).
To finalize C1 in FA : add({ (¬a1) }).
Note: there is another approach [Marques-Silva, Sakallah, FTCS 1997; Nadel, Ryvchin, SAT 2012]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 9

Assumption-based incremental SAT [Eén, Sörensson, ENTCS 2003]

SAT solver interface

add({C1, . . . ,Cn}) — add clauses C1, . . . ,Cn to the SAT solver.

solve({l1, . . . , lk}) — determine the satisfiability of the current set of
clauses under a partial assignment defined by literals {l1, . . . , lk}.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(p ∨ q)

C4
F

(a1 ∨ p)

C1

(a2 ∨ q)

C2

(a3 ∨ ¬p ∨ ¬q)

C3

(a4 ∨ p ∨ q)

C4
FA

To test F \ {C1}: add(FA); solve({a1,¬a2,¬a3,¬a4}) → SAT, model

To test F \ {C4}: add(FA); solve({¬a1,¬a2,¬a3, a4}) → UNSAT, core

Note: learned clauses are entailed by input clauses — can be exchanged.
To “remove” C4 from FA : add({ (a4) }).
To finalize C1 in FA : add({ (¬a1) }).
Note: there is another approach [Marques-Silva, Sakallah, FTCS 1997; Nadel, Ryvchin, SAT 2012]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 9

Assumption-based incremental SAT [Eén, Sörensson, ENTCS 2003]

SAT solver interface

add({C1, . . . ,Cn}) — add clauses C1, . . . ,Cn to the SAT solver.

solve({l1, . . . , lk}) — determine the satisfiability of the current set of
clauses under a partial assignment defined by literals {l1, . . . , lk}.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(p ∨ q)

C4
F

(a1 ∨ p)

C1

(a2 ∨ q)

C2

(a3 ∨ ¬p ∨ ¬q)

C3

(a4 ∨ p ∨ q)

C4
FA

To test F \ {C1}: add(FA); solve({a1,¬a2,¬a3,¬a4}) → SAT, model

To test F \ {C4}: add(FA); solve({¬a1,¬a2,¬a3, a4}) → UNSAT, core

Note: learned clauses are entailed by input clauses — can be exchanged.

To “remove” C4 from FA : add({ (a4) }).
To finalize C1 in FA : add({ (¬a1) }).
Note: there is another approach [Marques-Silva, Sakallah, FTCS 1997; Nadel, Ryvchin, SAT 2012]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 9

Assumption-based incremental SAT [Eén, Sörensson, ENTCS 2003]

SAT solver interface

add({C1, . . . ,Cn}) — add clauses C1, . . . ,Cn to the SAT solver.

solve({l1, . . . , lk}) — determine the satisfiability of the current set of
clauses under a partial assignment defined by literals {l1, . . . , lk}.

(p)

C1

(q)

C2

(¬p ∨ ¬q)

C3

(p ∨ q)

C4
F

(a1 ∨ p)

C1

(a2 ∨ q)

C2

(a3 ∨ ¬p ∨ ¬q)

C3

(a4 ∨ p ∨ q)

C4
FA

To test F \ {C1}: add(FA); solve({a1,¬a2,¬a3,¬a4}) → SAT, model

To test F \ {C4}: add(FA); solve({¬a1,¬a2,¬a3, a4}) → UNSAT, core

Note: learned clauses are entailed by input clauses — can be exchanged.
To “remove” C4 from FA : add({ (a4) }).
To finalize C1 in FA : add({ (¬a1) }).
Note: there is another approach [Marques-Silva, Sakallah, FTCS 1997; Nadel, Ryvchin, SAT 2012]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 9

Incremental SAT and Parallel MUS Extraction (sync)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA F 2

w = FA

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT
UNSAT

add({(a1), (¬a2)}) add({(a1), (¬a2)})

solve({a3,¬a4,¬a5, . . . }) solve({¬a3, a4,¬a5, . . . })

Threads always work on the same formula → unrestricted clause exchange.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 10

Incremental SAT and Parallel MUS Extraction (sync)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA ∪ {(a1), (¬a2)} F 2

w = FA ∪ {(a1), (¬a2)}

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT
UNSAT

add({(a1), (¬a2)}) add({(a1), (¬a2)})

solve({a3,¬a4,¬a5, . . . }) solve({¬a3, a4,¬a5, . . . })

Threads always work on the same formula → unrestricted clause exchange.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 10

Incremental SAT and Parallel MUS Extraction (sync)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA ∪ {(a1), (¬a2)} F 2

w = FA ∪ {(a1), (¬a2)}

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT
UNSAT

add({(a1), (¬a2)}) add({(a1), (¬a2)})

solve({a3,¬a4,¬a5, . . . }) solve({¬a3, a4,¬a5, . . . })

Threads always work on the same formula → unrestricted clause exchange.
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 10

Incremental SAT and Parallel MUS Extraction (async)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA F 2

w = FA

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT

add({(¬a2)})

UNSAT

solve({¬a1, a3,¬a4, . . . })

Threads work on different formulas:

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 11

Incremental SAT and Parallel MUS Extraction (async)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA F 2

w = FA ∪ {(¬a2)}

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT

add({(¬a2)})

UNSAT

solve({¬a1, a3,¬a4, . . . })

Threads work on different formulas:

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 11

Incremental SAT and Parallel MUS Extraction (async)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA F 2

w = FA ∪ {(¬a2)}

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT

add({(¬a2)})

UNSAT

solve({¬a1, a3,¬a4, . . . })

Threads work on different formulas: Thread 1 → Thread 2 is ok.
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 11

Incremental SAT and Parallel MUS Extraction (async)

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

F 1
w = FA F 2

w = FA ∪ {(¬a2)}

Thread 1 Master Thread 2

add(FA) add(FA)

solve({a1,¬a2,¬a3, . . . }) solve({¬a1, a2,¬a3, . . . })

SAT

add({(¬a2)})

UNSAT

solve({¬a1, a3,¬a4, . . . })

Threads work on different formulas: Thread 2 → Thread 1 ?
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 11

Soundness of “back” communication

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

Thread 1 (“behind”): F 1
w = FA, solve({a1,¬a2,¬a3, . . . })

Thread 2 (“ahead”): F 2
w = FA ∪ {(¬a2)}, solve({¬a1, a3,¬a4, . . . })

C – a clause learned by Thread 2. We have FA ∪ {(¬a2)} � C .

C is not entailed by FA, but since Thread 1 is solving under assumption
¬a2, it is valid for the duration of the call.

Before the next call (¬a2) will be added to Thread 1 by the Master, and C
will be again entailed by the input clauses.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 12

Soundness of “back” communication

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

Thread 1 (“behind”): F 1
w = FA, solve({a1,¬a2,¬a3, . . . })

Thread 2 (“ahead”): F 2
w = FA ∪ {(¬a2)}, solve({¬a1, a3,¬a4, . . . })

C – a clause learned by Thread 2. We have FA ∪ {(¬a2)} � C .

C is not entailed by FA, but since Thread 1 is solving under assumption
¬a2, it is valid for the duration of the call.

Before the next call (¬a2) will be added to Thread 1 by the Master, and C
will be again entailed by the input clauses.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 12

Soundness of “back” communication

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

Thread 1 (“behind”): F 1
w = FA, solve({a1,¬a2,¬a3, . . . })

Thread 2 (“ahead”): F 2
w = FA ∪ {(a2)}, solve({¬a1, a3,¬a4, . . . })

C – a clause learned by Thread 2.

Since a2 appears only positively in FA, no clause with a2 will participate in
the conflict. So, FA � C , and C can be used by Thread 1.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 13

Soundness of “back” communication

FA = {(a1 ∨ C1), (a2 ∨ C2), (a3 ∨ C3), (a4 ∨ C4), . . . }

Thread 1 (“behind”): F 1
w = FA, solve({a1,¬a2,¬a3, . . . })

Thread 2 (“ahead”): F 2
w = FA ∪ {(a2)}, solve({¬a1, a3,¬a4, . . . })

C – a clause learned by Thread 2.

Since a2 appears only positively in FA, no clause with a2 will participate in
the conflict. So, FA � C , and C can be used by Thread 1.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 13

Soundness of “back” communication

The devil is in the details (and the details are in the paper)

In the presence of model rotation and clause set refinement a worker may
become “redundant”.

Redundant workers must be aborted to ensure soundness.

Workers that are “behind” may return a subset of UNSAT core — the
Master can handle this with no overhead.

Formal description of the algorithm and the correctness proof are in the
paper.

Bottom line: unrestricted communication is possible — due to the
assumption-based incremental SAT.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 14

Soundness of “back” communication

The devil is in the details (and the details are in the paper)

In the presence of model rotation and clause set refinement a worker may
become “redundant”.

Redundant workers must be aborted to ensure soundness.

Workers that are “behind” may return a subset of UNSAT core — the
Master can handle this with no overhead.

Formal description of the algorithm and the correctness proof are in the
paper.

Bottom line: unrestricted communication is possible — due to the
assumption-based incremental SAT.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 14

Soundness of “back” communication

The devil is in the details (and the details are in the paper)

In the presence of model rotation and clause set refinement a worker may
become “redundant”.

Redundant workers must be aborted to ensure soundness.

Workers that are “behind” may return a subset of UNSAT core — the
Master can handle this with no overhead.

Formal description of the algorithm and the correctness proof are in the
paper.

Bottom line: unrestricted communication is possible — due to the
assumption-based incremental SAT.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 14

Soundness of “back” communication

The devil is in the details (and the details are in the paper)

In the presence of model rotation and clause set refinement a worker may
become “redundant”.

Redundant workers must be aborted to ensure soundness.

Workers that are “behind” may return a subset of UNSAT core — the
Master can handle this with no overhead.

Formal description of the algorithm and the correctness proof are in the
paper.

Bottom line: unrestricted communication is possible — due to the
assumption-based incremental SAT.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 14

Soundness of “back” communication

The devil is in the details (and the details are in the paper)

In the presence of model rotation and clause set refinement a worker may
become “redundant”.

Redundant workers must be aborted to ensure soundness.

Workers that are “behind” may return a subset of UNSAT core — the
Master can handle this with no overhead.

Formal description of the algorithm and the correctness proof are in the
paper.

Bottom line: unrestricted communication is possible — due to the
assumption-based incremental SAT.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 14

Improving communication

Would like to exchange promising clauses only.

I Restrict clause size (def: ≤ 10)

I Restrict clause LBD (def: ≤ 5)

I Optionally: change the limits dynamically

I Initialize (“bump”) activity of received clauses.

Important observation: assumptions are “second-class” citizens

A clause (a1 ∨ · · · ∨ ak ∨ x) is essentially a unit clause. But might be either
too long, or have a high LBD (each assumption has its own level).

Assumption “protection”: ignore assumptions when computing the values
for filters.

Note: a good idea for non-parallel MUS extraction as well [Audemard, Lagniez, Simon, SAT 2013]

(tomorrow morning).

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 15

Improving communication

Would like to exchange promising clauses only.

I Restrict clause size (def: ≤ 10)

I Restrict clause LBD (def: ≤ 5)

I Optionally: change the limits dynamically

I Initialize (“bump”) activity of received clauses.

Important observation: assumptions are “second-class” citizens

A clause (a1 ∨ · · · ∨ ak ∨ x) is essentially a unit clause. But might be either
too long, or have a high LBD (each assumption has its own level).

Assumption “protection”: ignore assumptions when computing the values
for filters.

Note: a good idea for non-parallel MUS extraction as well [Audemard, Lagniez, Simon, SAT 2013]

(tomorrow morning).

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 15

Improving communication

Would like to exchange promising clauses only.

I Restrict clause size (def: ≤ 10)

I Restrict clause LBD (def: ≤ 5)

I Optionally: change the limits dynamically

I Initialize (“bump”) activity of received clauses.

Important observation: assumptions are “second-class” citizens

A clause (a1 ∨ · · · ∨ ak ∨ x) is essentially a unit clause. But might be either
too long, or have a high LBD (each assumption has its own level).

Assumption “protection”: ignore assumptions when computing the values
for filters.

Note: a good idea for non-parallel MUS extraction as well [Audemard, Lagniez, Simon, SAT 2013]

(tomorrow morning).

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 15

Improving communication

Would like to exchange promising clauses only.

I Restrict clause size (def: ≤ 10)

I Restrict clause LBD (def: ≤ 5)

I Optionally: change the limits dynamically

I Initialize (“bump”) activity of received clauses.

Important observation: assumptions are “second-class” citizens

A clause (a1 ∨ · · · ∨ ak ∨ x) is essentially a unit clause. But might be either
too long, or have a high LBD (each assumption has its own level).

Assumption “protection”: ignore assumptions when computing the values
for filters.

Note: a good idea for non-parallel MUS extraction as well [Audemard, Lagniez, Simon, SAT 2013]

(tomorrow morning).

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 15

Parallelizing the main loop: communication

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) parallel, 4 thr. 146 126.45
no communication

(y) parallel, 4 thr. 153 133.98
communication

Communication is essential for performance.

Sound communication is enabled by incremental SAT.

Note: interestingly, sound resolution-based preprocessing for MUS extraction is also

enabled by incremental SAT [Belov, Järvisalo, Marques-Silva, TACAS 2013]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 16

Parallelizing the main loop: communication

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) parallel, 4 thr. 146 126.45
no communication

(y) parallel, 4 thr. 153 133.98
communication

Communication is essential for performance.

Sound communication is enabled by incremental SAT.

Note: interestingly, sound resolution-based preprocessing for MUS extraction is also

enabled by incremental SAT [Belov, Järvisalo, Marques-Silva, TACAS 2013]

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 16

Impact of “back” communication

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) parallel, 4 thr. 147 130.63
no back comm.

(y) parallel, 4 thr. 153 133.98
full comm

“Back” communication is actually quite crucial.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 17

Impact of “back” communication

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) parallel, 4 thr. 147 130.63
no back comm.

(y) parallel, 4 thr. 153 133.98
full comm

“Back” communication is actually quite crucial.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 17

Parallelizing the main loop: communication

175 benchs, MUS track, SC’11.

wall-clock limit 1800 sec

memory limit 16 GB.

#sol. avg.time

(x) sequential 144 186.46

(y) parallel, 4 thr. 153 133.98
async. + comm.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 18

Performance and scalability from 4 to 8 cores

Min. speedup Avg. sp. Max. sp. Med. sp.

Seq. vs 4 cores 0.49x 4.09x 132.59x 2.94x
Seq. vs 8 cores 0.28x 4.01x 97.66x 3.38x

Possible reasons: (i) duplication of work; (ii) parallelization overhead on
easy SAT calls.

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 19

Performance and scalability from 4 to 8 cores

Min. speedup Avg. sp. Max. sp. Med. sp.

Seq. vs 4 cores 0.49x 4.09x 132.59x 2.94x
Seq. vs 8 cores 0.28x 4.01x 97.66x 3.38x

Possible reasons: (i) duplication of work; (ii) parallelization overhead on
easy SAT calls.
A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 19

Final Remarks

Also in the paper ...

I “Core-based” scheduling — a slight improvement on 8 cores.

I Results for group-MUS — less exciting than for plain-MUS.

I Comparison with TarmoMUS [Wieringa, CP 2012 and Wieringa, Heljanko, TACAS 2013] ...
see the paper ,

Main points

I Incremental SAT is a key technology for for enabling efficient parallel
MUS extraction.

I Assumptions should be treated as superfluous during clause exchange.
I Good scalability to 4 cores; but not 8. Possible approaches:

I A good partitioning/job distribution heuristic.
I Parallel portfolio of MUS extractors ?

Thank you for your attention !

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 20

Final Remarks

Also in the paper ...

I “Core-based” scheduling — a slight improvement on 8 cores.

I Results for group-MUS — less exciting than for plain-MUS.

I Comparison with TarmoMUS [Wieringa, CP 2012 and Wieringa, Heljanko, TACAS 2013] ...
see the paper ,

Main points

I Incremental SAT is a key technology for for enabling efficient parallel
MUS extraction.

I Assumptions should be treated as superfluous during clause exchange.
I Good scalability to 4 cores; but not 8. Possible approaches:

I A good partitioning/job distribution heuristic.
I Parallel portfolio of MUS extractors ?

Thank you for your attention !

A. Belov, N. Manthey, J. Marques-Silva Parallel MUS Extraction SAT 2013 # 20

