Nested Boolean Functions as Models for QBFs

Uwe Bubeck and Hans Kleine Büning

University of Paderborn

July 11, 2013

Outline

- Introduction: QBF and (Counter-)Models
- Free Variables and Models
- NBF Representation
- Conclusion

Section 1

Introduction:
 QBF and (Counter-)Models

Quantified Boolean Formulas

QBF extends propositional logic by allowing universal and existential quantifiers over propositional variables.

Semantics of closed QBF:
$\exists y \Phi(y)$ is true if and only if
$\Phi[y / 0]$ is true or $\Phi[y / 1]$ is true.
$\forall x \Phi(x)$ is true if and only if $\Phi[x / 0]$ is true and $\Phi[x / 1]$ is true.

Tree Models

$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \vee \neg y_{1}\right) \wedge\left(\neg x_{1} \vee y_{2}\right) \wedge\left(y_{1} \vee x_{2} \vee \neg y_{2}\right) \wedge\left(\neg x_{2} \vee y_{2}\right)$

Function Models 1/2

QBF as a 2-player game: \exists and \forall player alternatingly choose assignments for variables in prefix order.

Function Models 2/2

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n} \phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\text { true }
$$

if and only if
$\forall x_{1} \ldots \forall x_{n} \phi\left(x_{1}, \ldots, x_{n}, f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=$ true for some f_{1}, \ldots, f_{n} (Skolem functions).

$$
\begin{gathered}
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n} \phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\text { false } \\
\text { if and only if }
\end{gathered}
$$

$\exists y_{1} \ldots \exists y_{n} \phi\left(g_{1}(), g_{2}\left(\mathrm{y}_{1}\right), \ldots, g_{n}\left(\mathrm{y}_{1}, \ldots, y_{n-1}\right), y_{1}, \ldots, y_{n}\right)=$ false for some g_{1}, \ldots, g_{n} (Herbrand functions).

Motivation

- Important applications: solver certificates, explanations, ...
- Balabanov and Jiang (2012):

Extract Skolem model from cube-resolution proof, Herbrand countermodel from clause-resolution proof.

- Problem: compact representation (no polynomial-size propositional encoding if $\Sigma_{2}^{P} \neq \Pi_{2}^{P}$)
- Contributions:
- direct polynomial-size encoding by NBFs
- (counter)models parameterized by free variables

Section 2

Free Variables and Models

Semantics of Free Variables

Closed QBF: either true or false
Open QBF: valuation depends on the free variables:

Free Variables and Models

How are the models and countermodels for different assignments to the free variables related to each other?

Complete Equivalence Models 1/2

Idea: Replace all quantified variables with functions over the free variables.

$$
\begin{gathered}
\forall v_{n} \exists v_{n-1} \ldots \forall v_{2} \exists v_{1} \phi\left(v_{1}, \ldots, v_{n}, z_{1}, \ldots, z_{r}\right) \\
\approx \\
\phi\left(h_{1}\left(z_{1}, \ldots, z_{r}\right), \ldots, h_{n}\left(z_{1}, \ldots, z_{r}\right), z_{1}, \ldots, z_{r}\right)
\end{gathered}
$$

Complete Equivalence Models 2/2

Why bother about models parameterized by free variables?
Non-prenex QBF:

$$
\begin{aligned}
& \forall a \exists b(\forall c \exists d \alpha(a, b, c, d)) \wedge(\forall x \exists y \beta(a, b, x, y)) \\
& \text { Open QBF with } \\
& \text { free vars } a, b \text {. }
\end{aligned}
$$

e.g. precompute partial certificate.

Section 3

NBF Representation

Nested Boolean Functions

A Nested Boolean Function (NBF) [Cook/Soltys 1999] is a sequence of functions $F=\left(f_{0}, \ldots, f_{k}\right)$ with

- initial functions f_{0}, \ldots, f_{t} given as propositional formulas
- compound functions $f_{i}\left(x^{i}\right):=f_{j_{0}}\left(f_{j_{1}}\left(x_{1}^{i}\right), \ldots, f_{j_{r}}\left(x_{r}^{i}\right)\right)$ for previously defined functions $f_{j_{0}}, \ldots, f_{j_{r}}$.

Example: parity of Boolean variables
$f_{0}\left(p_{1}, p_{2}\right):=\left(\neg p_{1} \wedge p_{2}\right) \vee\left(p_{1} \wedge \neg p_{2}\right)$
$f_{1}\left(p_{1}, p_{2}, p_{3}, p_{4}\right):=f_{0}\left(f_{0}\left(p_{1}, p_{2}\right), f_{0}\left(p_{3}, p_{4}\right)\right)$
$f_{2}\left(p_{1}, \ldots, p_{16}\right):=f_{1}\left(f_{1}\left(p_{1}, \ldots, p_{4}\right), \ldots, f_{1}\left(p_{13}, \ldots, p_{16}\right)\right)$

Quantifier Encoding in NBF 1/2

QBF: $\quad \Phi(\mathbf{z}):=\exists x \phi(x, z)$

$$
\Phi(z) \approx F_{1}(z)
$$

NBF: $\quad F_{0}(x, z):=\phi(x, z)$
$F_{1}(\mathbf{z}) \quad:=F_{0}\left(F_{0}(1, \mathbf{z}), \mathbf{z}\right)$
$=1$ if $\mathrm{x}=1$ is a satisfying choice
$=F_{0}(1, \mathbf{z})=1$

Quantifier Encoding in NBF 1/2

QBF: $\quad \Phi(\mathbf{z}):=\exists x \phi(x, \mathbf{z})$

NBF: $\quad F_{0}(x, z):=\phi(x, z)$
$F_{1}(\mathbf{z}) \quad:=F_{0}\left(F_{0}(1, \mathbf{z}), \mathbf{z}\right)$
$=0$ if $x=1$ is not satisfying
$=F_{0}(0, z)$

Quantifier Encoding in NBF 2/2

QBF: $\quad \Phi(\mathbf{z}):=\forall y \exists x \phi(x, y, \mathbf{z})$

$$
F_{0}(x, y, \mathbf{z}):=\phi(x, y, \mathbf{z})
$$

NBF: $\quad F_{1}(y, \mathbf{z}) \quad:=F_{0}\left(F_{0}(1, y, z), y, \mathbf{z}\right)$
$F_{2}(z)$
$:=F_{1}\left(F_{1}(0, \mathbf{z}), \mathbf{z}\right)$
$=0$ if $y=0$ is not satisfying

$$
=F_{1}(0, \boldsymbol{z})=0
$$

Quantifier Encoding in NBF 2/2

QBF: $\quad \Phi(\mathbf{z}):=\forall y \exists x \phi(x, y, \mathbf{z})$

$$
F_{0}(x, y, \mathbf{z}):=\phi(x, y, \mathbf{z})
$$

NBF: $\quad F_{1}(y, \mathbf{z}) \quad:=F_{0}\left(F_{0}(1, y, z), y, \mathbf{z}\right)$
$F_{2}(z)$
$:=F_{1}\left(F_{1}(0, \mathbf{z}), \mathbf{z}\right)$
$=1$ if $\mathrm{y}=0$ is satisfying
$=F_{1}(1, z)$

Quantifier Encoding in NBF 2/2

QBF: $\quad \Phi(\mathbf{z}):=\forall y \exists x \phi(x, y, z)$

$$
F_{0}(x, y, \mathbf{z}):=\phi(x, y, \mathbf{z})
$$

NBF: $\quad F_{1}(y, \boldsymbol{z}) \quad:=F_{0}\left(F_{0}(1, y, z), y, \mathbf{z}\right)$

$$
F_{2}(\mathbf{z}) \quad:=\quad F_{1}\left(F_{1}(0, \mathbf{z}), \mathbf{z}\right)
$$

\rightarrow Concise representation of QDPLL branching: innermost call of F_{i} is the first branch, outermost call of F_{i} is the second branch, or a repetition of the first one if it is already conclusive.

Complete Equiv. Model in NBF 1/2

First branch determines which branch is conclusive.
\rightarrow this is our witness, i.e. (counter)model.

Complete Equiv. Model in NBF 1/2

First branch determines which branch is conclusive. \rightarrow this is our witness, i.e. (counter)model.

QBF: $\quad \Phi(\mathbf{z}):=\forall y \exists x \phi(x, y, \mathbf{z})$

$$
\begin{aligned}
& h_{x}(\mathbf{z}) \\
& F_{0}(x, y, z):=\phi(x, y, \mathbf{z}) \\
& \text { BF: } \quad F_{1}(y, z):=F_{0}\left(F_{0}(1, y, z), y, z\right) \\
& F_{2}(\mathbf{z}):=F_{1}\left(F_{1}(0, \boldsymbol{z}),\right.
\end{aligned}
$$

Complete Equiv. Model in NBF 1/2

QBF: $\quad \Phi(\mathbf{z}):=\forall y \exists x \phi(x, y, \mathbf{z})$

\[

\]

NBF:

Complete Equiv. Model in NBF 2/2

In general:

$$
\Phi(\mathbf{z}):=Q_{n} v_{n} \ldots Q_{1} v_{1} \phi\left(v_{1}, \ldots, v_{n}, \mathbf{z}\right)
$$

Complete equivalence model:

$$
h_{i}(\mathbf{z}):=\left\{\begin{array}{l}
F_{i-1}\left(0, h_{i+1}(\mathbf{z}), \ldots, h_{1}(\mathbf{z}), \mathbf{z}\right), \text { if } Q_{i}=\forall \\
F_{i-1}\left(1, h_{i+1}(\mathbf{z}), \ldots, h_{1}(\mathbf{z}), \mathbf{z}\right), \text { if } Q_{i}=\exists
\end{array}\right.
$$

Clearly polynomial size, which is not possible with a propositional encoding if $\Sigma_{2}^{P} \neq \Pi_{2}^{P}$.

Admittedly more difficult to evaluate. But:
Equiv. model checking PSPACE-hard even if $h_{i}(\mathbf{z}) \in\{0,1\}$.

Section 4

Conclusion

Conclusion

- Complete equivalence models as a generalization of Skolem/Herbrand (counter)models parameterized by free variables.
- Concise characterization of QDPLL branching and thus polynomial space by nested Boolean functions with one initial function and special recursive instantiation.

Future Work

- Restrictions on the model structure for subclasses of QBF, e.g. Horn, 2-CNF, etc.
- Build a NBF solver.

The End

