
SMT Solving for Nonlinear Theories over the Reals

Edmund M. Clarke
School of Computer Science
Carnegie Mellon University

Joint Work with Sicun Gao, Soonho Kong, and Jeremy Avigad

Special thanks to Lenore Blum for her insightful comments.

1/40

Symbolic Model Checking with BDDs

Method used by most “industrial strength” model checkers:

I uses Boolean encoding for state machine and sets of states.

I can handle much larger designs – hundreds of state variables.

I BDDs traditionally used to represent Boolean functions.

2/40

Problems with BDDs

I BDDs are a canonical representation. Often become too large.

I Variable ordering must be uniform along paths.

I Selecting right variable ordering very important for obtaining small
BDDs.

I Often time consuming or needs manual intervention.

I Sometimes, no space efficient variable ordering exists.

BMC is an alternative approach to symbolic model checking that
uses SAT procedures.

3/40

Advantages of SAT Procedures

I SAT procedures also operate on Boolean expressions but do not use
canonical forms.

I Do not suffer from the potential space explosion of BDDs.

I Different split orderings possible on different branches.

I Very efficient implementations available.

4/40

Bounded Model Checking
(Clarke, Biere, Cimatti, Zhu)

I Bounded model checking uses a SAT procedure instead of BDDs.

I We construct Boolean formula that is satisfiable iff there is a
counterexample of length k.

I We look for longer and longer counterexamples by incrementing the
bound k.

5/40

Bounded Model Checking (Cont.)

I After some number of iterations, we may conclude no
counterexample exists and specification holds.

I For example, to verify safety properties, number of iterations is
bounded by diameter of finite state machine.

6/40

Main Advantages of Our Approach

I Bounded model checking finds counterexamples fast. This is due to
depth first nature of SAT search procedures.

I It finds counterexamples of minimal length. This feature helps user
understand counterexample more easily.

7/40

Main Advantages of Our Approach (Cont.)

I It uses much less space than BDD based approaches.

I Does not need manually selected variable order or costly reordering.
Default splitting heuristics usually sufficient.

I Bounded model checking of LTL formulas does not require a
tableau or automaton construction.

8/40

Implementation

I Implemented a tool BMC in 1999.

I It accepts a subset of the SMV language.

I Given k, BMC outputs a formula that is satisfiable iff
counterexample exists of length k.

I If counterexample exists, a standard SAT solver generates a truth
assignment for the formula.

9/40

Performance

I There are many examples where BMC significantly outperforms
BDD based model checking.

I In some cases BMC detects errors instantly, while SMV fails to
construct BDD for initial state.

I Armin’s example: Circuit with 9510 latches, 9499 inputs.
BMC formula has 4× 106 variables, 1.2× 107 clauses.
Shortest bug of length 37 found in 69 seconds.

10/40

Temporal Logic

I We use linear temporal logic (LTL) for specifications.

I Basic LTL operators:
next time ‘X’ eventuality ‘F’
globally ‘G’ until ‘U’
release ‘R’

11/40

Temporal Logic

I Only consider existential LTL formulas Ef , where

I E is the existential path quantifier, and

I f is a temporal formula with no path quantifiers.

I Finding a witness for Ef is equivalent to finding a counterexample
for A¬f .

12/40

Kripke Structure

I System described as a Kripke structure M = (S, I, T, `), where

I S is a finite set of states and I a set of initial states,

I T ⊆ S × S is the transition relation,
(We assume every state has a successor state.)

I ` : S → P(A) is the state labeling.

13/40

The Microwave Oven Example

AG(start→ (¬heat U close))

~ Start

~ Close

~ Heat

~ Error

Start

~ Close

~ Heat

Error

~ Start

Close

~ Heat

~ Error

~ Start

Close

Heat

~ Error

Start

Close

Heat

~ Error

Start

Close

~ Heat

~ Error

Start

Close

~ Heat

Error

14/40

Definitions and Notation (Cont.)

I In symbolic model checking, a state is represented by a vector of
state variables s = (s(1), . . . , s(n)).

I We define propositional formulas fI(s), fT (s, t) and fp(s) as
follows:

I fI(s) iff s ∈ I,

I fT (s, t) iff (s, t) ∈ T , and

I fp(s) iff p ∈ `(s).

I We write T (s, t) instead of fT (s, t), etc.

15/40

Definitions and Notation (Cont.)

I If π = (s0, s1, . . .), then π(i) = si and πi = (si, si+1, . . .).

I π is a path if π(i)→ π(i+ 1) for all i.

I Ef is true in M (M |= Ef) iff there is a path π in M with π |= f
and π(0) ∈ I.

I Model checking is the problem of determining the truth of an LTL
formula in a Kripke structure. Equivalently,

Does a witness exist for the LTL formula?

16/40

Diameter

I Diameter d: Least number of steps to reach all reachable states. If
the property holds for k ≥ d, the property holds for all reachable
states.

I Finding d is computationally hard:

I State s is reachable in j steps:

Rj(s) := ∃s0, . . . , sj : s = sj ∧ I(s0) ∧
j−1∧
i=0

T (si, si+1)

I Thus, k is greater or equal than the diameter d if

∀s : Rk+1(s) =⇒ ∃j ≤ k : Rj(s)

This requires an efficient QBF checker!

17/40

The Cyber-Physical Challenge

I Complex aerospace, automotive, biological systems.

I They combine discrete and continuous behaviors.

I Many are safety-critical.

18/40

Bounded Model Checking for Hybrid Automata

I Hybrid automata [Henzinger 1996] are widely used to model
cyber-physical systems.

I They combine finite automata with continuous dynamical systems.

I Grand challenge for formal verification!

I Reachability for simple systems is undecidable.

I Existing tools do not scale on realistic systems.

19/40

Hybrid Systems

H = 〈X,Q, Init,Flow, Jump〉
I A continuous space X ⊆ Rk and a finite set of modes Q.

I Init ⊆ Q×X: initial configurations

I Flow: continuous flows

I Each mode q is equipped with differential equations
d~x

dt
= ~fq(~x, t).

I Jump: discrete jumps

I The system can be switched from (q, ~x) to (q′, ~x′), resetting
modes and variables.

20/40

Example: Cardiac-Cell Model

21/40

Reachability for Continuous Systems

Single differential equation case:

I Continuous Dynamics:
d~x(t)

dt
= ~f(~x(t), t)

I The solution curve:

α : R→ X, α(t) = α(0) +

∫ t

0

~f(α(s), s)ds.

I Define the predicate

JFlow(~x0, t, ~x)KM = {(~x0, t, ~x) : α(0) = ~x0, α(t) = ~x}

I Reachability: Is it possible to reach an unsafe state from an initial
state following trajectory of differential equations?

I ∃~x0, ~x, t. (Init(~x0) ∧ Flow(~x0, t, ~x) ∧ Unsafe(~x)) ?

22/40

Reachability for Hybrid Systems

Combining continuous and discrete behaviors, we can encode bounded
reachability:

I “~x is reachable after after 0 discrete jumps”:

Reach0(~x) := ∃~x0, t. [Init(~x0) ∧ Flow(~x0, t, ~x)]

I Inductively, “~x is reachable after k + 1 discrete jumps” is definable as:

Reachk+1(~x) := ∃~xk, ~x′k, t. [Reachk(~xk) ∧ Jump(~xk, ~x
′
k) ∧ Flow(~x′k, t, ~x)]

I Unsafe within n discrete jumps:

∃~x. (
n∨

i=0

Reachi(~x) ∧ Unsafe(~x)) ?

23/40

A Major Obstacle

We have shown how to use first-order formulas over the real numbers to
encode formal verification problems for hybrid automata.

I Need to decide the truth value of formulas, which include nonlinear
real functions.

I Polynomials

I Exponentiation and trigonometric functions

I Solutions of ODEs, mostly no closed forms

I High complexity for polynomials; undecidable for either sin or cos.

24/40

Connection to Type 2 Computability

I Negative results put a limit on symbolic decision procedures for the
theory over nonlinear real functions.

I In practice (control engineering, scientific computing) these
functions are routinely computed numerically.

I Can we use numerical algorithms to decide logic formulas over the
reals?

25/40

Computable Real Numbers

I A real number a ∈ R is computable if it has a name γa : N→ Q
that is a total computable function.

I 0.33...,
√
2, π, e,

0.101010010001000001...

I Not all reals are computable!

I There are only countably many Turing machines while there
are uncountably many real numbers.

26/40

Quote from Turing’s 1936 Paper

I “Equally easy to define and investigate computable functions of an
integral variable or a real or computable variable.”

I A. M. Turing, On Computable Numbers with an Application to the

Entscheidungsproblem, Proceedings of the London Math Society, 1936.

I A real function f is computable, if there exists a Type 2 Turing
Machine that maps any name γa of a to a name γf(a) of f(a).

27/40

Type 2 Turing Machines

A Type 2 Turing
Machine extends an
ordinary (Type 1)
Turing Machine in
the following way.

I Both the input
tapes are
infinite and
read-only.

I The output
tape is infinite
and one-way.

...

...

...

M

... k input tapes

work tapes

output tape

fM (y1, . . . , yk) = y

y

y1

yk

... ...

...

... ...

}
}

28/40

Connection to Type 2 Computability

I Type 2 computability gives a theoretical model of numerical
computation.

I exp, sin, ODEs are all Type 2 computable functions.

I We have developed a special type of decision procedure for
first-order theories over the reals with Type 2 computable functions.

I [Gao, Avigad, Clarke LICS2012, IJCAR2012].

29/40

Perturbations on Logic Formulas

Satisfiability of quantifier-free formulas under numerical perturbations:

I Consider any formula

ϕ :
∧

i(
∨

j fij(~x) = 0)

I Inequalities are turned into interval bounds on slack variables.

I For any δ ∈ Q+, let ~c be a constant vector satisfying ||~c||max ≤ δ.

A δ-perturbation on ϕ is the formula:

ϕ~c :
∧
i

(
∨
j

fij(~x) = cij)

30/40

The δ-Decision Problem

We developed a decision procedure using numerical techniques (with an
error bound δ) that guarantees:

I If ϕ is decided as “unsatisfiable”, then it is indeed unsatisfiable.

I If ϕ is decided as “δ-satisfiable”, then:

Under some δ-perturbation ~c, ϕ~c is satisfiable.

If a decision procedure satisfies this property, we say it is “δ-complete”.

31/40

Decidability and Complexity

I The delta-decision problem is decidable for bounded first-order
formulas over arbitrary Type 2 computable functions.

I Complexity: (using [Ko 1991, Weihrauch 2000, Kawamura 2010])

I NP-complete for existential formulas in {+,×, exp, sin, ...}.
I PSPACE-complete for existential formulas with ODEs.

I Note the difference: The strict decision problems are all undecidable
for these signatures.

I This is not bad news: Modern SAT/SMT solvers can often handle
many NP-complete problems in practice.

32/40

Delta-Complete Bounded Model Checking

Recall that when bounded model checking a hybrid system H, we ask if
ϕ : Reach≤nH (~x) ∧ Unsafe(~x) is satisfiable.

I If ϕ is unsatisfiable,
then H is safe up to
depth n.

I If ϕ is δ-satisfiable,
then H is unsafe under
some δ-perturbation.

 Bad States

Reachable
States

 Bad States

Reachable
States

 Bad States

Reachable
States

delta-unsafesafe unsafe

33/40

Practical tool: dReal

Our solver dReal is open-source at dreal.cs.cmu.edu.

34/40

dReal

I Nonlinear signatures including exp, sin, etc., and
Lipschitz-continuous ODEs.

I δ-Complete and correctness proofs are provided.

I Tight integration of DPLL(T), interval arithmetic, constraint
solving, reliable integration, etc.

35/40

Example: Kepler Conjecture Benchmarks

I Around 1000 formulas. Huge combinations of nonlinear terms.

I dReal solves over 95% of the formulas. (5-min timeout each)

36/40

Example: Cardiac-Cell Model

I The cardiac-cell model is
a hybrid system that
contains nonlinear
differential equations.

I No existing formal
analysis tool can
analyze this model.

I The unsafe states of the
model lead to serious
cardiac disorder.

37/40

Example: Cardiac-Cell Model

I Using our tool dReal, we check the
safety property “globally u < θv”.

“When the property is violated,
the cardiac cells lose excitability,
which would trigger a spiral
rotation of electrical wave and
break up into a disordered
collection of spirals (fibrillation).”

38/40

Example: Cardiac-Cell Model

Counterexample found by dReal, confirmed by experimental data.

I The formulas we solved contain over 200 highly nonlinear ODEs
and over 600 variables.

39/40

Conclusion

I Turing’s original goal of understanding numerical computation has
become important in design and analysis of cyber-physical systems.

I We can utilize the notion of computability over the reals in formal
verification of such systems.

I Practical solver: dReal (open-source at dreal.cs.cmu.edu).

I Current applications:

I Completing formal proofs for the Kepler Conjecture

I Finding parameters for cancer treatment models

I Verifying safety of autonomous vehicles

40/40

