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Symbolic Model Checking with BDDs

Method used by most “industrial strength” model checkers:

I uses Boolean encoding for state machine and sets of states.

I can handle much larger designs – hundreds of state variables.

I BDDs traditionally used to represent Boolean functions.
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Problems with BDDs

I BDDs are a canonical representation. Often become too large.

I Variable ordering must be uniform along paths.

I Selecting right variable ordering very important for obtaining small
BDDs.

I Often time consuming or needs manual intervention.

I Sometimes, no space efficient variable ordering exists.

BMC is an alternative approach to symbolic model checking that
uses SAT procedures.
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Advantages of SAT Procedures

I SAT procedures also operate on Boolean expressions but do not use
canonical forms.

I Do not suffer from the potential space explosion of BDDs.

I Different split orderings possible on different branches.

I Very efficient implementations available.
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Bounded Model Checking
(Clarke, Biere, Cimatti, Zhu)

I Bounded model checking uses a SAT procedure instead of BDDs.

I We construct Boolean formula that is satisfiable iff there is a
counterexample of length k.

I We look for longer and longer counterexamples by incrementing the
bound k.
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Bounded Model Checking (Cont.)

I After some number of iterations, we may conclude no
counterexample exists and specification holds.

I For example, to verify safety properties, number of iterations is
bounded by diameter of finite state machine.
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Main Advantages of Our Approach

I Bounded model checking finds counterexamples fast. This is due to
depth first nature of SAT search procedures.

I It finds counterexamples of minimal length. This feature helps user
understand counterexample more easily.
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Main Advantages of Our Approach (Cont.)

I It uses much less space than BDD based approaches.

I Does not need manually selected variable order or costly reordering.
Default splitting heuristics usually sufficient.

I Bounded model checking of LTL formulas does not require a
tableau or automaton construction.
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Implementation

I Implemented a tool BMC in 1999.

I It accepts a subset of the SMV language.

I Given k, BMC outputs a formula that is satisfiable iff
counterexample exists of length k.

I If counterexample exists, a standard SAT solver generates a truth
assignment for the formula.
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Performance

I There are many examples where BMC significantly outperforms
BDD based model checking.

I In some cases BMC detects errors instantly, while SMV fails to
construct BDD for initial state.

I Armin’s example: Circuit with 9510 latches, 9499 inputs.
BMC formula has 4× 106 variables, 1.2× 107 clauses.
Shortest bug of length 37 found in 69 seconds.
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Temporal Logic

I We use linear temporal logic (LTL) for specifications.

I Basic LTL operators:
next time ‘X’ eventuality ‘F’
globally ‘G’ until ‘U’
release ‘R’
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Temporal Logic

I Only consider existential LTL formulas Ef , where

I E is the existential path quantifier, and

I f is a temporal formula with no path quantifiers.

I Finding a witness for Ef is equivalent to finding a counterexample
for A¬f .
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Kripke Structure

I System described as a Kripke structure M = (S, I, T, `), where

I S is a finite set of states and I a set of initial states,

I T ⊆ S × S is the transition relation,
(We assume every state has a successor state.)

I ` : S → P(A) is the state labeling.
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The Microwave Oven Example
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Definitions and Notation (Cont.)

I In symbolic model checking, a state is represented by a vector of
state variables s = (s(1), . . . , s(n)).

I We define propositional formulas fI(s), fT (s, t) and fp(s) as
follows:

I fI(s) iff s ∈ I,

I fT (s, t) iff (s, t) ∈ T , and

I fp(s) iff p ∈ `(s).

I We write T (s, t) instead of fT (s, t), etc.
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Definitions and Notation (Cont.)

I If π = (s0, s1, . . .), then π(i) = si and πi = (si, si+1, . . .).

I π is a path if π(i)→ π(i+ 1) for all i.

I Ef is true in M (M |= Ef) iff there is a path π in M with π |= f
and π(0) ∈ I.

I Model checking is the problem of determining the truth of an LTL
formula in a Kripke structure. Equivalently,

Does a witness exist for the LTL formula?
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Diameter

I Diameter d: Least number of steps to reach all reachable states. If
the property holds for k ≥ d, the property holds for all reachable
states.

I Finding d is computationally hard:

I State s is reachable in j steps:

Rj(s) := ∃s0, . . . , sj : s = sj ∧ I(s0) ∧
j−1∧
i=0

T (si, si+1)

I Thus, k is greater or equal than the diameter d if

∀s : Rk+1(s) =⇒ ∃j ≤ k : Rj(s)

This requires an efficient QBF checker!
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The Cyber-Physical Challenge

I Complex aerospace, automotive, biological systems.

I They combine discrete and continuous behaviors.

I Many are safety-critical.
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Bounded Model Checking for Hybrid Automata

I Hybrid automata [Henzinger 1996] are widely used to model
cyber-physical systems.

I They combine finite automata with continuous dynamical systems.

I Grand challenge for formal verification!

I Reachability for simple systems is undecidable.

I Existing tools do not scale on realistic systems.
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Hybrid Systems

H = 〈X,Q, Init,Flow, Jump〉
I A continuous space X ⊆ Rk and a finite set of modes Q.

I Init ⊆ Q×X: initial configurations

I Flow: continuous flows

I Each mode q is equipped with differential equations
d~x

dt
= ~fq(~x, t).

I Jump: discrete jumps

I The system can be switched from (q, ~x) to (q′, ~x′), resetting
modes and variables.
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Example: Cardiac-Cell Model

  

21/40



Reachability for Continuous Systems

Single differential equation case:

I Continuous Dynamics:
d~x(t)

dt
= ~f(~x(t), t)

I The solution curve:

α : R→ X, α(t) = α(0) +

∫ t

0

~f(α(s), s)ds.

I Define the predicate

JFlow(~x0, t, ~x)KM = {(~x0, t, ~x) : α(0) = ~x0, α(t) = ~x}

I Reachability: Is it possible to reach an unsafe state from an initial
state following trajectory of differential equations?

I ∃~x0, ~x, t. (Init(~x0) ∧ Flow(~x0, t, ~x) ∧ Unsafe(~x)) ?
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Reachability for Hybrid Systems

Combining continuous and discrete behaviors, we can encode bounded
reachability:

I “~x is reachable after after 0 discrete jumps”:

Reach0(~x) := ∃~x0, t. [Init(~x0) ∧ Flow(~x0, t, ~x)]

I Inductively, “~x is reachable after k + 1 discrete jumps” is definable as:

Reachk+1(~x) := ∃~xk, ~x′k, t. [Reachk(~xk) ∧ Jump(~xk, ~x
′
k) ∧ Flow(~x′k, t, ~x)]

I Unsafe within n discrete jumps:

∃~x. (
n∨

i=0

Reachi(~x) ∧ Unsafe(~x)) ?
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A Major Obstacle

We have shown how to use first-order formulas over the real numbers to
encode formal verification problems for hybrid automata.

I Need to decide the truth value of formulas, which include nonlinear
real functions.

I Polynomials

I Exponentiation and trigonometric functions

I Solutions of ODEs, mostly no closed forms

I High complexity for polynomials; undecidable for either sin or cos.
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Connection to Type 2 Computability

I Negative results put a limit on symbolic decision procedures for the
theory over nonlinear real functions.

I In practice (control engineering, scientific computing) these
functions are routinely computed numerically.

I Can we use numerical algorithms to decide logic formulas over the
reals?
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Computable Real Numbers

I A real number a ∈ R is computable if it has a name γa : N→ Q
that is a total computable function.

I 0.33...,
√
2, π, e,

0.101010010001000001...

I Not all reals are computable!

I There are only countably many Turing machines while there
are uncountably many real numbers.
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Quote from Turing’s 1936 Paper

I “Equally easy to define and investigate computable functions of an
integral variable or a real or computable variable.”

I A. M. Turing, On Computable Numbers with an Application to the

Entscheidungsproblem, Proceedings of the London Math Society, 1936.

I A real function f is computable, if there exists a Type 2 Turing
Machine that maps any name γa of a to a name γf(a) of f(a).
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Type 2 Turing Machines

A Type 2 Turing
Machine extends an
ordinary (Type 1)
Turing Machine in
the following way.

I Both the input
tapes are
infinite and
read-only.

I The output
tape is infinite
and one-way.

...

...

...

M

... k input tapes
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fM (y1, . . . , yk) = y

y

y1

yk

... ...

...

... ...

}
}
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Connection to Type 2 Computability

I Type 2 computability gives a theoretical model of numerical
computation.

I exp, sin, ODEs are all Type 2 computable functions.

I We have developed a special type of decision procedure for
first-order theories over the reals with Type 2 computable functions.

I [Gao, Avigad, Clarke LICS2012, IJCAR2012].
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Perturbations on Logic Formulas

Satisfiability of quantifier-free formulas under numerical perturbations:

I Consider any formula

ϕ :
∧

i(
∨

j fij(~x) = 0)

I Inequalities are turned into interval bounds on slack variables.

I For any δ ∈ Q+, let ~c be a constant vector satisfying ||~c||max ≤ δ.

A δ-perturbation on ϕ is the formula:

ϕ~c :
∧
i

(
∨
j

fij(~x) = cij)
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The δ-Decision Problem

We developed a decision procedure using numerical techniques (with an
error bound δ) that guarantees:

I If ϕ is decided as “unsatisfiable”, then it is indeed unsatisfiable.

I If ϕ is decided as “δ-satisfiable”, then:

Under some δ-perturbation ~c, ϕ~c is satisfiable.

If a decision procedure satisfies this property, we say it is “δ-complete”.
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Decidability and Complexity

I The delta-decision problem is decidable for bounded first-order
formulas over arbitrary Type 2 computable functions.

I Complexity: (using [Ko 1991, Weihrauch 2000, Kawamura 2010])

I NP-complete for existential formulas in {+,×, exp, sin, ...}.
I PSPACE-complete for existential formulas with ODEs.

I Note the difference: The strict decision problems are all undecidable
for these signatures.

I This is not bad news: Modern SAT/SMT solvers can often handle
many NP-complete problems in practice.
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Delta-Complete Bounded Model Checking

Recall that when bounded model checking a hybrid system H, we ask if
ϕ : Reach≤nH (~x) ∧ Unsafe(~x) is satisfiable.

I If ϕ is unsatisfiable,
then H is safe up to
depth n.

I If ϕ is δ-satisfiable,
then H is unsafe under
some δ-perturbation.

  

     Bad States

Reachable
States

           Bad States

Reachable
States

           Bad States

Reachable
States

delta-unsafesafe unsafe
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Practical tool: dReal

Our solver dReal is open-source at dreal.cs.cmu.edu.
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dReal

I Nonlinear signatures including exp, sin, etc., and
Lipschitz-continuous ODEs.

I δ-Complete and correctness proofs are provided.

I Tight integration of DPLL(T), interval arithmetic, constraint
solving, reliable integration, etc.
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Example: Kepler Conjecture Benchmarks

I Around 1000 formulas. Huge combinations of nonlinear terms.

I dReal solves over 95% of the formulas. (5-min timeout each)
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Example: Cardiac-Cell Model

I The cardiac-cell model is
a hybrid system that
contains nonlinear
differential equations.

I No existing formal
analysis tool can
analyze this model.

I The unsafe states of the
model lead to serious
cardiac disorder.
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Example: Cardiac-Cell Model

I Using our tool dReal, we check the
safety property “globally u < θv”.

“When the property is violated,
the cardiac cells lose excitability,
which would trigger a spiral
rotation of electrical wave and
break up into a disordered
collection of spirals (fibrillation).”
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Example: Cardiac-Cell Model

Counterexample found by dReal, confirmed by experimental data.

I The formulas we solved contain over 200 highly nonlinear ODEs
and over 600 variables.
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Conclusion

I Turing’s original goal of understanding numerical computation has
become important in design and analysis of cyber-physical systems.

I We can utilize the notion of computability over the reals in formal
verification of such systems.

I Practical solver: dReal (open-source at dreal.cs.cmu.edu).

I Current applications:

I Completing formal proofs for the Kepler Conjecture

I Finding parameters for cancer treatment models

I Verifying safety of autonomous vehicles
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