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The MAXSAT Problem

• MAXSAT is an optimization version of SAT
• An instance of the MAXSAT problem is given by a CNF

formula F and a cost wt(C) ∈ N ∪ {∞} associated with
each clause C

• A truth assignment π has cost equal to the sum of the
costs of the clauses it falsifies

• Goal: find an optimal truth assignment, i.e., a truth
assignment of minimum cost mincost(F)

• Clauses with wt(C) = ∞ are hard, all others are soft
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Cores

x̄ ∨ z x x̄

x̄

y ∨ z̄

y ∨ z̄

ȳ x ∨ y

• A core is any subset of the soft clauses that is inconsistent
with the hard clauses

• This instance F has 4 cores
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Hitting Sets

x̄ ∨ z x

x̄

x̄

y ∨ z̄

y ∨ z̄ ȳ x ∨ y

π = {x , ȳ , z}

• The clauses falsified by π are a hitting set of the cores
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MaxHS Theorem

x̄ ∨ z x

x̄

x̄

y ∨ z̄

y ∨ z̄ ȳ x ∨ y

By the theorem, π = {x , ȳ , z} is a solution

Theorem: if π satisfies F \ hs where hs is a minimum cost
hitting set of a collection of cores, then π is a solution
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The MaxHS Approach

• In this paper we extend this existing approach for solving
MAXSAT

Min Cost
Hitting Set

of
κ1, . . . , κk

F \ hs is
SAT?

No

Yes
π

hs

Core κi ⊆ F \ hs
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The SAT Model

• The SAT solver works with a relaxed formula

Fb = hard(F) ∪ {Ci ∨ bi |Ci ∈ soft(F)}

• The bi are the relaxation variables, each appearing in only
one clause

• To test if F \ hs is SAT, we use the set of assumptions

Ahs = {bi |Ci ∈ hs} ∪ {¬bi |Ci /∈ hs}

• Applying these assumptions to Fb produces F \ hs
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Core Generation

Fb

Known Cores Assumptions Ahs

C1 x̄ ∨ z ∨ b1

κ1 = {C2,C3}

C2 x ∨ b2

κ2 = {C3,C5,C6}

C3 x̄ ∨ b3

κ3 = {C1,C4,C5,C6}

C4 y ∨ z̄ ∨ b4
C5 ȳ ∨ b5

Hitting Set

C6 x ∨ y ∨ b6

hs = {C3,C6}
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Fb Known Cores

Assumptions Ahs
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Core Generation

Fb Known Cores Assumptions Ahs
C1 x̄ ∨ z ∨ b1 κ1 = {C2,C3} ¬b1
C2 x ∨ b2 κ2 = {C3,C5,C6} ¬b2
C3 x̄ ∨ b3 κ3 = {C1,C4,C5,C6} b3
C4 y ∨ z̄ ∨ b4 ¬b4
C5 ȳ ∨ b5 Hitting Set ¬b5
C6 x ∨ y ∨ b6 hs = {C3,C6} b6
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Core Generation

Fb|Ahs Known Cores Assumptions Ahs
C1 x̄ ∨ z

∨

κ1 = {C2,C3} ¬b1
C2 x

∨

κ2 = {C3,C5,C6} ¬b2

C3 x̄ ∨

κ3 = {C1,C4,C5,C6} b3
C4 y ∨ z̄

∨

¬b4
C5 ȳ

∨

Hitting Set ¬b5

C6 x ∨ y ∨

hs = {C3,C6} b6
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Core Generation

Fb|Ahs Known Cores Assumptions Ahs
C1 x̄ ∨ z

∨

κ1 = {C2,C3} ¬b1
C2 x

∨

κ2 = {C3,C5,C6} ¬b2

C3 x̄ ∨

κ3 = {C1,C4,C5,C6} b3
C4 y ∨ z̄

∨

¬b4
C5 ȳ

∨

Hitting Set ¬b5

C6 x ∨ y ∨

hs = {C3,C6} b6

Conflict Clause b1 ∨ b2 ∨ b4 ∨ b5
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Core Generation

• The conflict clause (b1 ∨ b2 ∨ b4 ∨ b5) intuitively means
that one of the corresponding clauses must be falsified:

• κ4 = {C1,C2,C4,C5} is a new core
• The b-variables appear only positively in Fb

• Positive b-variables in the assumptions only satisfy clauses,
and cannot contribute to conflicts

• ∴ all conflict clauses derived by the SAT solver correspond
to cores
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Hitting Set IP Model

Objective: min Σibiwt(Ci)

Constraints: Σbi |Ci∈κj bi ≥ 1 for all known cores κj

CPLEX

Ahs
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MaxHS Performance

• The existing MaxHS solver performs well but is not
state-of-the-art [Davies and Bacchus, CP-11]

• The time required to solve the hitting set problems
dominates

• In this paper we present methods that improve the
performance of MaxHS

• These methods involve giving CPLEX more information, in
order to

• reduce the difficulty of solving the IP model
• reduce the number of times the IP model is solved
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CPLEX as MAXSAT Solver

minimaxsat bincd cplex wpm1
Industrial 1637 2251 1779 2152
Crafted 933 534 1019 711
Total 2570 2785 2798 2863

(Number solved out of a total of 3826 non-random instances)

• MAXSAT can be translated to IP using a standard encoding
• CPLEX is actually a very good MAXSAT solver, especially

on Crafted instances
• MaxHS uses CPLEX, so can we further exploit CPLEX?
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SAT Model with Equivalences

• In the MaxHS approach, setting a relaxation variable bi to
true represents falsifying Ci

• However, this relationship is not fully captured by the SAT
model

• We modify the SAT model Fb by adding equivalence
clauses that enforce bi ≡ C̄i

Fb
eq = Fb ∪ Equivalence Clauses

(¬x ∨ z ∨ b1) (¬b1 ∨ x), (¬b1 ∨¬z)
(x ∨ b2) (¬b2 ∨¬x)

(¬x ∨ b3) (¬b3 ∨ x)
(y ∨¬z ∨ b4) (¬b4 ∨¬y), (¬b4 ∨ z)

(¬y ∨ b5) (¬b5 ∨ y)
(x ∨ y ∨ b6) (¬b6 ∨¬x), (¬b6 ∨¬y)
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Non-Core Constraints

• Now, the b-variables appear both positively and negatively
in the SAT model

• Hence, propagating bi = true can contribute to a
contradiction

• Conflict clauses returned by the SAT solver can now
contain both positive and negative b-literals
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Non-Core Constraints

• E.g., (b1 ∨ b2 ∨¬b3)
• This clauses says that either C1 or C2 must be falsified OR

C3 must be truthified, in any MAXSAT solution

• These clauses no longer represents cores, but can still be
added to the IP model to guide CPLEX

• CPLEX no longer solves a pure hitting set problem
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Non-Core Constraints

• The non-core constraints also capture the previously
defined Realizability condition on the hitting sets [Davies
and Bacchus, CP-11]

• Mutual falsifiability:
• Clauses with clashing literals can not be falsified at the

same time
e.g., (¬x ∨ z ∨ b1) and (x ∨ y ∨ b6)

• The equivalence clauses (¬b1 ∨ x), (¬b6 ∨¬x) allow us
to derive the non-core constraint (¬b1 ∨¬b6) to enforce
this condition

• Compatibility with hard(F): automatically checks that
falsifying the clauses in the hitting set is compatible with
satisfying the hard clauses
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Seeding

• In MaxHS, CPLEX starts with no constraints, and then
receives cores only one at time

• We can give CPLEX more information to begin with, using
the technique of seeding

• Seeding involves deriving initial constraints for CPLEX
• We propose 3 different seeding techniques



1. Background 2. The MaxHS Approach 3. Exploiting CPLEX 4. Empirical Results

Eq-Seeding

• Many MAXSAT instances contain unit soft clauses
• Ci = (x) means bi ≡ ¬x
• Given these equivalencies, check if any clauses of Fb can

be rewritten as clauses over only b-literals
• E.g., given

C2 = (x ∨ b2) → ¬b2 ≡ x
C5 = (¬y ∨ b5) → b5 ≡ y

from (x ∨ y ∨ b6) we obtain

(¬b2 ∨ b5 ∨ b6)

• Such clauses can be added to CPLEX initially
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Implication Seeding

• Given the equivalence theory Fb
eq we can unit propagate

each b-literal (probing)
• For each bi (and ¬bi ) we collect the set of b-literals it

implies, {b1
i , . . . ,b

k
i }

• This represents k binary clauses
• We can add a single linear constraint to CPLEX:

−k ∗ bi + b1
i + · · ·+ bk

i ≥ 0
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Reverse Implication Seeding

• During Implication Seeding, when we unit propagate each
b-literal we also find implied original literals

e.g., b1→ x , b2→ y
• Unlike in Eq-Seeding, these relationships are not

equivalences
• However, we can replace x and y in a clause

(¬x ,¬y) ∈ Fb to obtain a b-variable clause (¬b1,¬b2)
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Other Methods

• We improve the information given to CPLEX via two
additional methods

1. Strengthen the constraints: reduce the conflict clauses to
be minimal using a greedy MUS algorithm

2. More initial constraints for CPLEX: greedily compute a set
of disjoint cores

• See the paper for more details
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Experimental Setup

• All crafted and industrial instances from the previous seven
MAXSAT Evaluations, with duplicates removed

• We removed 17 families that we felt are better classified as
random. This leaves 3826 instances out of 4502.

• 2.1 GHz CPUs, 2.5 GB, 1200 sec. timeout
• Note that the previous two MAXSAT Evaluations were

limited to 0.5GB machines
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Overall Results
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Industrial Instances
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Crafted Instances
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Comparison of Our New Methods
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Divergence of Performance

MaxHS+ wpm1 cplex bincd minimaxsat
MaxHS+ 399 439 325 584

wpm1 292 508 324 756
cplex 303 449 546 529
bincd 143 232 502 566

minimaxsat 187 457 289 421

• Entry (i , j) in the table shows the number of problems
solved by i in 600 sec. that j failed to solve within twice as
much time

• Each of the top 5 solvers outperforms the others on a
non-trivial number of instances

• Indicates that each of these solvers embeds useful ideas
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Conclusion

• The basic approach of MaxHS involves splitting the
problem between two solvers, a SAT solver and a MIPS
solver

• The approach is very flexible and in this paper we have
exploited some of this flexibility to split the task between
the two solvers in a different way

• Using approximations to avoid solving the IP model to
optimality yields even better performance [to appear,
CP-2013]
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