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Backbones in propositional theories

A backbone of a propositional theory is a variable that has the
same truth value in each satisfying assignment.

I i.e., x ∈ Var(ϕ) is a backbone of a CNF formula ϕ
if ϕ |= x or ϕ |= ¬x .

Identifying backbones allows us to simplify the theory.

Unfortunately, deciding whether a variable is a backbone is
coNP-complete.

Our approach:
I Relax and localize the notion of a backbone.
I It is reasonable that some variables are enforced locally

(local backbones).
I Main theoretical tool: parameterized complexity theory.

1/16



Overview

What are local backbones?

Do local backbones occur?

Parameterized complexity results

Iterative local backbones



What are local backbones?

Definition (k -backbones).
A k-backbone of a CNF formula ϕ is a variable x ∈ Var(ϕ) such
that for some ϕ′ ⊆ ϕ with |ϕ′| ≤ k it holds that ϕ′ |= x or ϕ′ |= ¬x .

Example: x2 is a 2-backbone of ϕ
(¬x2 is implied by a subset of size 2).

ϕ = {{x1,¬x2}, {¬x1,¬x2}, {x2, x3, x4}, {x2,¬x3, x4}, {¬x4, x5}}

I Every k -backbone of ϕ is a backbone of ϕ.

I 1-backbones correspond to unit clauses.
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Distribution of local backbones
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Parameterized complexity theory

Parameterized complexity theory investigates how to
algorithmically exploit structure in problem instances.

I Takes into account a parameter k of the input, besides the
input size n.

If k is a constant, then finding k -backbones can be done in
polynomial time.

I Brute force search in roughly nk time (XP).
I For k = 3, 4, . . . this is already not so practical.

We would like to solve the problem in f (k) · nc time, for some
function f and some constant c: fixed-parameter tractability (FPT).

Introduction to fixed-parameter algorithms

Given a “combinatorially explosive” (NP-hard) problem with input
size n, parameter value k, then the leitmotif is:

n k
instead of

kn

! Guaranteed optimality of the solution ⇑

! Provable upper bounds on the computational complexity ⇑

! Exponential running time ⇓

Fixed-Parameter Algorithms Rolf Niedermeier & Jiong Guo 4
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Parameterized complexity theory

To give evidence that some problems are not FPT,
there exist fixed-parameter intractability classes:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]

The classes W[t] are based on the question whether certain
Boolean circuits are satisfiable with k input nodes set to true.

These classes are not fixed-parameter tractable unless the
Exponential Time Hypothesis (ETH) fails.

I ETH: 3SAT cannot be solved in subexponential time.
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The parameterized decision problem

We consider the following parameterized decision problems, for
propositional languages C.

LOCAL-BACKBONE[C]
Instance: a CNF formula ϕ ∈ C, a variable x ∈ Var(ϕ),

and an integer k ≥ 1.

Parameter: k.

Question: Is x a k-backbone of ϕ?
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Formulas with bounded variable occurrence

Fix an integer d ≥ 1. We let VOd denote the class of CNF
formulas in which each variable occurs at most d times.

Theorem. LOCAL-BACKBONE(VOd) is FPT.
Proof (idea). Bounded search tree.

Search for a subset ϕ′ ⊆ ϕ witnessing ϕ′ |= ` for some ` ∈ {x ,¬x}
with a bounded search tree.

Start with some clause c containing x .

For each variable y in the current set ϕ′, guess a (non-empty)
subset of clauses containing y .

I bounded number of branches,
since y occurs in at most d clauses

The depth of the search tree is at most k , since |ϕ′| ≤ k .
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Local backbones of various propositional fragments
Complexity of LOCAL-BACKBONE[C], for C ⊆ {D,N,K,H}:

-

H N K D

SAT is NP-hard

NH KH DH NK DN DK

NKH DNH DKH DNK

DNKH

W[1]-complete
FPT

(NP-complete)

D: no purely negative clauses
N: no unit clauses
K: clauses are Krom
H: clauses are Horn e.g., DH corresponds to definite Horn

(All results hold also for the restriction to 3CNF.)
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Small Unsatisfiable Subsets

Local backbones are closely related to small unsatisfiable subsets.

I useful for the repair of inconsistent knowledge bases.

Originally considered in Fellows et al. (2006).

SMALL-UNSATISFIABLE-SUBSET[C]
Instance: a CNF formula ϕ ∈ C, and an integer k ≥ 1.

Parameter: k.

Question: Is there an unsatisfiable ϕ′ ⊆ ϕ
with at most k clauses?

Theorem.
For any C, SMALL-UNSATISFIABLE-SUBSET[C] has the same
parameterized complexity as LOCAL-BACKBONE[C].
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Definite Horn Formulas

Theorem. LOCAL-BACKBONE[DefHorn] is W[1]-hard.
Proof (idea). Reduction from MULTICOLORED-CLIQUE (see below).
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(A slight modification of the proof works for the case of NH.)
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Krom Formulas

Remember: deciding whether a variable is a (non-local) backbone
of a Krom formula ϕ can be done in poly-time.

I e.g., by using reachability in the implication graph of ϕ.

Theorem. LOCAL-BACKBONE[Krom] is W[1]-hard.
Proof (idea). Reduction from CLIQUE.

Essential to the proof:
I paths in the implication graph may use some clauses twice,
I so k -reachability in the implication graph cannot be used.

This contrasts to the result of Buresh-Oppenheim & Mitchell
(2006,2007) that finding a minimum (tree-like) resolution refutation
of a Krom formula can be found in poly-time.

I The smallest refutation does not necessarily use the smallest
number of clauses.
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Iterative Local Backbones

Iterative local backbones are variables with an enforced truth value
that can be found after iteratively instantiating local backbones.

Definition. Iterative k -backbones.
An iterative k-backbone of a CNF formula ϕ is a variable
x ∈ Var(ϕ) such that either:

I x is a k -backbone of ϕ; or
I there exists a k -backbone y of ϕ, with enforced literal

` ∈ {y ,¬y}, and x is an iterative k -backbone of ϕ|`.

Example: x4 is an iterative 2-backbone of ϕ
(¬x2 is implied by a subset of ϕ of size 2;
x4 is implied by a subset of ϕ|¬x2 of size 2).

ϕ = {{x1,¬x2}, {¬x1,¬x2}, {x2 , x3, x4}, {x2 ,¬x3, x4}, {¬x4, x5}}
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Distribution of (iterative) local backbones
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Dashed: local backbones, solid: iterative local backbones.
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Iterative Local Backbones

For propositional languages C, the parameterized decision
problems ITERATIVE-LOCAL-BACKBONE[C] are defined
analogously to LOCAL-BACKBONE[C].

Theorem. For any C, if LOCAL-BACKBONE[C] is FPT, then
also ITERATIVE-LOCAL-BACKBONE[C] is FPT.
Proof (idea). Iteratively find k -backbones and instantiate them,
until a fixed-point is reached.

Theorem. ITERATIVE-LOCAL-BACKBONE[NH] is W[1]-hard.

Proof (idea). The hardness proof for LOCAL-BACKBONE[NH] also
works for this case.
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Iterative Local Backbones

ITERATIVE-LOCAL-BACKBONE[Krom] is in P.
Proof (idea). Iterative k -backbones of a Krom formula ϕ can be
found by iteratively applying backbones that are based on
k -reachability in the implication graph of ϕ.

ITERATIVE-LOCAL-BACKBONE[DefHorn] is in P.
Proof (idea). The set of iterative k -backbones of a definite Horn
formula ϕ coincides with the set of (non-local) backbones of ϕ.

!! Remember, LOCAL-BACKBONE[Krom] and
LOCAL-BACKBONE[DefHorn] are W[1]-hard
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Take home message – quick overview

I Relatively many backbones might be local backbones
(or iterative local backbones).

I Identifying local backbones is in XP (poly-time for fixed k ).

I For formulas with bounded variable occurrences, it is
fixed-parameter tractable.

I It is W[1]-hard already for definite Horn and Krom formulas;
I interestingly, in these cases iterative local backbones are

easier to find (poly-time).

I Finding small unsatisfiable subsets is of the same
parameterized complexity (for all fragments).
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