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Backbones in propositional theories

A backbone of a propositional theory is a variable that has the
same truth value in each satisfying assignment.

> i.e., x € Var(p) is a backbone of a CNF formula ¢
if o = xorpkE=-x.

Identifying backbones allows us to simplify the theory.

Unfortunately, deciding whether a variable is a backbone is
coNP-complete.

Our approach:
» Relax and localize the notion of a backbone.

> It is reasonable that some variables are enforced locally
(local backbones).

» Main theoretical tool: parameterized complexity theory.
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What are local backbones?

Definition (k-backbones).

A k-backbone of a CNF formula ¢ is a variable x € Var(p) such
that for some ¢’ C o with |¢/| < k it holds that ¢’ = x or ¢’ |E —x.

Example: x> is a 2-backbone of ¢
(—x2 is implied by a subset of size 2).

Y= {{X1 ) _'X2}7 {_‘X‘I ’ _'X2}7 {X27 X3, X4}7 {X27 X3, X4}7 {_'X47 X5}}

» Every k-backbone of ¢ is a backbone of .

» 1-backbones correspond to unit clauses.
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Where were we?

Do local backbones occur?



Distribution of local backbones
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Parameterized complexity theory

Parameterized complexity theory investigates how to
algorithmically exploit structure in problem instances.
» Takes into account a parameter k of the input, besides the
input size n.

If k is a constant, then finding k-backbones can be done in
polynomial time.

» Brute force search in roughly n” time (XP).

» For k = 3,4,... this is already not so practical.

We would like to solve the problem in f(k) - n° time, for some
function f and some constant c: fixed-parameter tractability (FPT).

instead of
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Parameterized complexity theory

To give evidence that some problems are not FPT,
there exist fixed-parameter intractability classes:

FPT CW[1] CW[2] C --- C W[P]
The classes W[t] are based on the question whether certain
Boolean circuits are satisfiable with k input nodes set to true.

These classes are not fixed-parameter tractable unless the
Exponential Time Hypothesis (ETH) fails.

» ETH: 3SAT cannot be solved in subexponential time.
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Where were we?

Parameterized complexity results



The parameterized decision problem

We consider the following parameterized decision problems, for
propositional languages C.

LOCAL-BACKBONE|C]

Instance: a CNF formula p € C, a variable x € Var(p),
and an integer k > 1.

Parameter: k.

Question: Is x a k-backbone of p?
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Formulas with bounded variable occurrence

Fix an integer d > 1. We let VO4 denote the class of CNF
formulas in which each variable occurs at most d times.

Theorem. LOCAL-BACKBONE(VOy) is FPT.
Proof (idea). Bounded search tree.
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Formulas with bounded variable occurrence

Fix an integer d > 1. We let VO4 denote the class of CNF
formulas in which each variable occurs at most d times.

Theorem. LOCAL-BACKBONE(VOy) is FPT.
Proof (idea). Bounded search tree.

Search for a subset ¢’ C ¢ witnessing ¢’ = ¢ for some ¢ € {x, —x}
with a bounded search tree.

Start with some clause ¢ containing x.

For each variable y in the current set ’, guess a (non-empty)
subset of clauses containing y.

» bounded number of branches,
since y occurs in at most d clauses

The depth of the search tree is at most k, since |¢/| < k. 16



Formulas with bounded variable occurrence

Fix an integer d > 1. We let VO4 denote the class of CNF
formulas in which each variable occurs at most d times.

Theorem. LOCAL-BACKBONE(VOy) is FPT.
Proof (idea). Bounded search tree.

Example:

o ={{=x1, %}, {X, X3}, {=xe}, {—Xs, Xa}, {=x3, =Xa }, {xa, x5 } }

{{x2, x3}}
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Formulas with bounded variable occurrence

Fix an integer d > 1. We let VO4 denote the class of CNF
formulas in which each variable occurs at most d times.

Theorem. LOCAL-BACKBONE(VOy) is FPT.
Proof (idea). Bounded search tree.

Example:

o ={{=x1, %}, {X, X3}, {=xe}, {—Xs, Xa}, {=x3, =Xa }, {xa, x5 } }

branching < 2d

{{x2, x3}}
— I T~
e xa}, {—x1, %23} e e} {xe}) {0 xa)s {0, e}, {2}

depth < k \ _— \ . |

P

{{X.zx X.3}> {ﬁjz}{x.m ﬁ.X4}, {ﬁ.Xs, ﬁ.m}}
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Local backbones of various propositional fragments
Complexity of LOCAL-BACKBONE|[C], for C C {D,N,K,H}:

K_ b

NH KH. DH NK DN DK
NKH DNH DKH DNK

DNKH

D: no purely negative clauses

N: no unit clauses

K: clauses are Krom

H: clauses are Horn e.g., DH corresponds to definite Horn
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Local backbones of various propositional fragments
Complexity of LOCAL-BACKBONE|[C], for C C {D,N,K,H}:
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WI[1]-complete NKH'-._ADNZH DKHDNK (NP-complete)
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K: clauses are Krom
H: clauses are Horn e.g., DH corresponds to definite Horn

(All results hold also for the restriction to 3CNF.) 8/16
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Small Unsatisfiable Subsets

Local backbones are closely related to small unsatisfiable subsets.

» useful for the repair of inconsistent knowledge bases.

Originally considered in Fellows et al. (2006).

SMALL-UNSATISFIABLE-SUBSET[C]

Instance: a CNF formula p € C, and an integerk > 1.

Parameter: k.

Question: Is there an unsatisfiable ¢’ C ¢
with at most k clauses?
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Small Unsatisfiable Subsets

Local backbones are closely related to small unsatisfiable subsets.
» useful for the repair of inconsistent knowledge bases.

Originally considered in Fellows et al. (2006).

SMALL-UNSATISFIABLE-SUBSET[C]

Instance: a CNF formula p € C, and an integerk > 1.
Parameter: k.

Question: Is there an unsatisfiable ¢’ C ¢
with at most k clauses?

Theorem.

For any C, SMALL-UNSATISFIABLE-SUBSET[C] has the same
parameterized complexity as LOCAL-BACKBONE|C].
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Definite Horn Formulas

Theorem. LOCAL-BACKBONE[DefHorn] is W[1]-hard.
Proof (idea). Reduction from MULTICOLORED-CLIQUE (see below).

(A slight modification of the proof works for the case of NH.)
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Krom Formulas

Remember: deciding whether a variable is a (non-local) backbone
of a Krom formula ¢ can be done in poly-time.

> e.g., by using reachability in the implication graph of .
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Krom Formulas

Remember: deciding whether a variable is a (non-local) backbone
of a Krom formula ¢ can be done in poly-time.

> e.g., by using reachability in the implication graph of .

Theorem. LOCAL-BACKBONE[Krom] is W[1]-hard.
Proof (idea). Reduction from CLIQUE.
Essential to the proof:
» paths in the implication graph may use some clauses twice,

» so k-reachability in the implication graph cannot be used.

This contrasts to the result of Buresh-Oppenheim & Mitchell
(2006,2007) that finding a minimum (tree-like) resolution refutation
of a Krom formula can be found in poly-time.

» The smallest refutation does not necessarily use the smallest

number of clauses.
11/16



Where were we?
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lterative Local Backbones

lterative local backbones are variables with an enforced truth value
that can be found after iteratively instantiating local backbones.

Definition. Iterative k-backbones.

An jterative k-backbone of a CNF formula ¢ is a variable
x € Var(y) such that either:

» X is a k-backbone of ¢; or

» there exists a k-backbone y of ¢, with enforced literal
¢ € {y,—y}, and x is an iterative k-backbone of ;.

Example: x4 is an iterative 2-backbone of ¢
(—xo is implied by a subset of ¢ of size 2;
X4 is implied by a subset of ¢|_, of size 2).

w = {{X1 ) _'X2}7 {_'X1 ) _'XZ}) %)%7 X4}7 %_‘X37 X4}) {_'X47 XS}}
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Distribution of (iterative) local backbones
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lterative Local Backbones

For propositional languages C, the parameterized decision
problems ITERATIVE-LOCAL-BACKBONE|[C] are defined
analogously to LOCAL-BACKBONE|[C].

Theorem. For any C, if LOCAL-BACKBONE|C] is FPT, then
also ITERATIVE-LOCAL-BACKBONE|C] is FPT.

Proof (idea). Iteratively find k-backbones and instantiate them,
until a fixed-point is reached.

Theorem. ITERATIVE-LOCAL-BACKBONE[NH] is W[1]-hard.

Proof (idea). The hardness proof for LOCAL-BACKBONE[NH] also
works for this case.
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lterative Local Backbones

ITERATIVE-LOCAL-BACKBONE[Krom] is in P.

Proof (idea). Iterative k-backbones of a Krom formula ¢ can be
found by iteratively applying backbones that are based on
k-reachability in the implication graph of .

ITERATIVE-LOCAL-BACKBONE[DefHorn] is in P.

Proof (idea). The set of iterative k-backbones of a definite Horn
formula ¢ coincides with the set of (non-local) backbones of ¢.

” Remember, LOCAL-BACKBONE[Krom] and
== LocAL-BACKBONE[DefHorn] are W[1]-hard

15/16



Take home message — quick overview

» Relatively many backbones might be local backbones
(or iterative local backbones).

» Identifying local backbones is in XP (poly-time for fixed k).

» For formulas with bounded variable occurrences, it is
fixed-parameter tractable.

» It is W[1]-hard already for definite Horn and Krom formulas;

» interestingly, in these cases iterative local backbones are
easier to find (poly-time).

» Finding small unsatisfiable subsets is of the same
parameterized complexity (for all fragments).
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