MUStICCa: MUS Extraction with Interactive Choice of Candidates (Tool Paper)

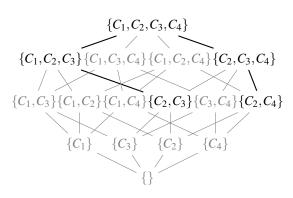
Johannes Dellert, Christian Zielke and Michael Kaufmann

Algorithmics Group,
Department of Computer Science,
University of Tübingen

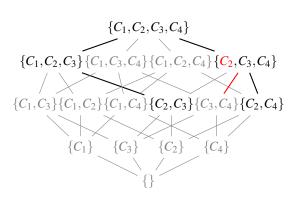
July 11, 2013
The International Conference on Theory and Applications of Satisfiability Testing

Interactive MUS Extraction

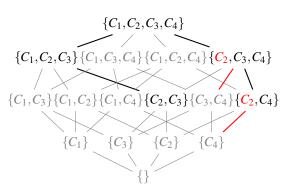
A Weakness of Current MUS Extraction Technology

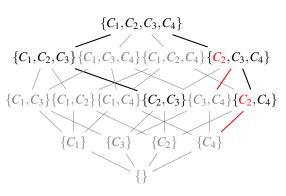

- MUS extraction tools are black boxes which return some arbitrary MUS
- no information about the search space, MUSes are difficult to compare

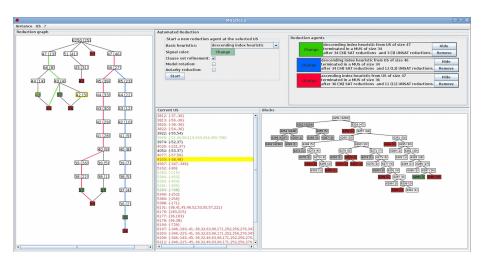
The Idea

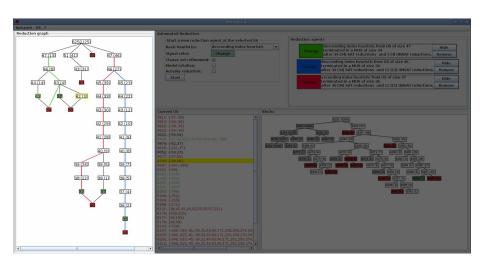

- explicitly visualize the search space as part of the powerset lattice
- allow the user to manually execute reduction steps

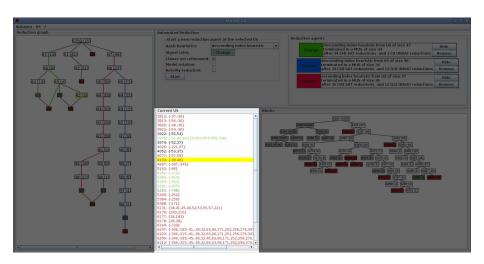
Advantages

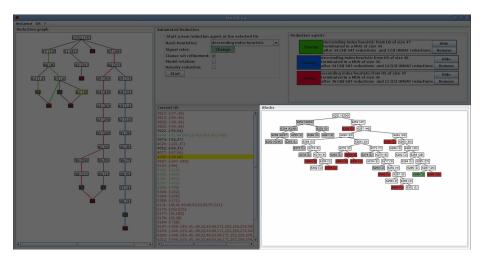

- we receive a good impression of search space structure
- experts can prioritize reduction attempts according to their domain knowledge in order to extract several interesting MUSes and compare them
- we can exploit synergies between different branches of the search space exploration by systematically sharing criticality information

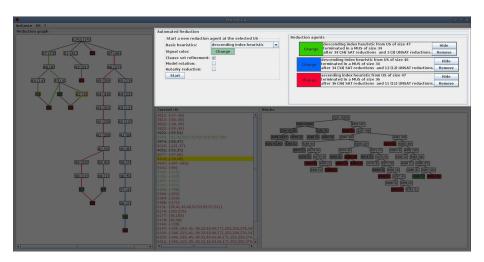

- powerset lattice of $\{C_1, C_2, C_3, C_4\}$
- black edges / subsets already explored

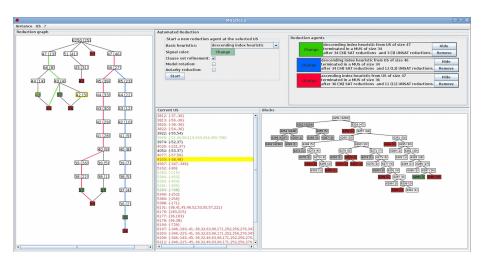

- powerset lattice of $\{C_1, C_2, C_3, C_4\}$
- black edges / subsets already explored
- let C_2 be critical in $\{C_2, C_3, C_4\}$




- powerset lattice of {C₁,C₂,C₃,C₄}
- black edges / subsets already explored
- let C_2 be critical in $\{C_2, C_3, C_4\}$
- downward propagation via explored edges: C₂ critical in {C₂,C₄} as well
- lose information: e.g.
 criticality of C₂ in {C₂,C₃}




- powerset lattice of $\{C_1, C_2, C_3, C_4\}$
- black edges / subsets already explored
- let C_2 be critical in $\{C_2, C_3, C_4\}$
- downward propagation via explored edges: C₂ critical in {C₂,C₄} as well
- lose information: e.g.
 criticality of C₂ in {C₂, C₃}
- our solution: systematically sharing criticality information via constraints on selector variables



The End

JAR release and user's manual available at

algo.inf.uni-tuebingen.de/?site=forschung/sat/MUStICCa

source code available at

kahina.org

much more information in

Dellert, J.: Interactive Extraction of Minimal Unsatisfiable Cores Enhanced By Meta Learning. Diplomarbeit, Universität Tübingen (2013)

Thank you for your attention!