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Motivation

Practical problems combine real-world hard constraints with
soft constraints

Soft constraints: preferences, uncertainties, flexible
requirements

We explore probabilistic logic as a mean of dealing with
combined soft and hard constraints

Finger, Le Bras, Gomes, Selman Cornell/USP
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Goals

Aim: Combine Logic and Probabilistic reasoning to deal
with Hard (L) and Soft (P) constraints

Method: develop optimized Probabilistic Satisfiability
(oPSAT)

Application: Demonstrate effectiveness on a real-world
reasoning task in the domain of Materials Discovery.
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An Example

Summer course enrollment

m students and k summer courses.
Potential team mates, to develop coursework. Constraints:

Hard Coursework to be done alone or in pairs.
Students must enroll in at least one and at most
three courses.
There is a limit of ℓ students per course.

Soft Avoid having students with no teammate.
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An Example

Summer course enrollment

m students and k summer courses.
Potential team mates, to develop coursework. Constraints:

Hard Coursework to be done alone or in pairs.
Students must enroll in at least one and at most
three courses.
There is a limit of ℓ students per course.

Soft Avoid having students with no teammate.

In our framework: P(student with no team mate) “minimal” or
bounded

Finger, Le Bras, Gomes, Selman Cornell/USP
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Combining Logic and Probability

Many proposals in the literature

Markov Logic Networks [Richardson & Domingos 2006]
Probabilistic Inductive Logic Prog [De Raedt et. al 2008]
Relational Models [Friedman et al 1999], etc
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Combining Logic and Probability

Many proposals in the literature

Markov Logic Networks [Richardson & Domingos 2006]
Probabilistic Inductive Logic Prog [De Raedt et. al 2008]
Relational Models [Friedman et al 1999], etc

Our choice: Probabilistic Satisfiability (PSAT)

Natural extension of Boolean Logic
Desirable properties, e.g. respects Kolmogorov axioms
Probabilistic reasoning free of independence presuppositions
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Combining Logic and Probability

Many proposals in the literature

Markov Logic Networks [Richardson & Domingos 2006]
Probabilistic Inductive Logic Prog [De Raedt et. al 2008]
Relational Models [Friedman et al 1999], etc

Our choice: Probabilistic Satisfiability (PSAT)

Natural extension of Boolean Logic
Desirable properties, e.g. respects Kolmogorov axioms
Probabilistic reasoning free of independence presuppositions

What is PSAT?

Finger, Le Bras, Gomes, Selman Cornell/USP
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Is PSAT a Zombie Idea?

An idea that refuses to die!
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A Brief History of PSAT

Proposed by [Boole 1854],
On the Laws of Thought

Rediscovered several times since Boole

De Finetti [1937, 1974], Good [1950], Smith [1961]
Studied by Hailperin [1965]
Nilsson [1986] (re)introduces PSAT to AI
PSAT is NP-complete [Georgakopoulos et. al 1988]
Nilsson [1993]: “complete impracticability” of PSAT
computation
Many other works; see Hansen & Jaumard [2000]
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Or a Wild Amazonian Flower?

Awaits special conditions to bloom!

(Linear programming + SAT-based techniques)
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The Setting

Formulas α1, . . . , αℓ over logical variables P = {x1, . . . , xn}

Propositional valuation v : P → {0, 1}
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The Setting

Formulas α1, . . . , αℓ over logical variables P = {x1, . . . , xn}

Propositional valuation v : P → {0, 1}

A probability distribution over propositional valuations

π : V → [0, 1]

2n
∑

i=1

π(vi ) = 1
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The Setting

Formulas α1, . . . , αℓ over logical variables P = {x1, . . . , xn}

Propositional valuation v : P → {0, 1}

A probability distribution over propositional valuations

π : V → [0, 1]

2n
∑

i=1

π(vi ) = 1

Probability of a formula α according to π

Pπ(α) =
∑

{π(vi )|vi (α) = 1}

Finger, Le Bras, Gomes, Selman Cornell/USP
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The PSAT Problem

Consider ℓ formulas α1, . . . , αℓ defined on n atoms
{x1, . . . , xn}

A PSAT problem Σ is a set of ℓ restrictions

Σ = {P(αi ) S pi |1 ≤ i ≤ ℓ}

Probabilistic Satisfiability: is there a π that satisfies Σ?
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HardSoft & PSAT



Motivation PSAT oPSAT Application Conclusion

The PSAT Problem

Consider ℓ formulas α1, . . . , αℓ defined on n atoms
{x1, . . . , xn}

A PSAT problem Σ is a set of ℓ restrictions

Σ = {P(αi ) S pi |1 ≤ i ≤ ℓ}

Probabilistic Satisfiability: is there a π that satisfies Σ?

In our framework, ℓ = m + k , Σ = Γ ∪Ψ:

Hard Γ = {α1, . . . , αm}, P(αi ) = 1 (clauses)
Soft Ψ = {P(si ) ≤ pi |1 ≤ i ≤ k}

si atomic; pi given, learned or minimized

Finger, Le Bras, Gomes, Selman Cornell/USP
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Example continued

Only one course, three student enrollments: x , y and z

Potential partnerships: pxy and pxz , mutually exclusive.
Hard constraint

P(x ∧ y ∧ z ∧ ¬(pxy ∧ pxz)) = 1

Soft constraints

P(x ∧ ¬pxy ∧ ¬pxz) ≤ 0.25
P(y ∧ ¬pxy ) ≤ 0.60
P(z ∧ ¬pxz) ≤ 0.60

Finger, Le Bras, Gomes, Selman Cornell/USP
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Example continued

Only one course, three student enrollments: x , y and z

Potential partnerships: pxy and pxz , mutually exclusive.
Hard constraint

P(x ∧ y ∧ z ∧ ¬(pxy ∧ pxz)) = 1

Soft constraints

P(x ∧ ¬pxy ∧ ¬pxz) ≤ 0.25
P(y ∧ ¬pxy ) ≤ 0.60
P(z ∧ ¬pxz) ≤ 0.60

(Small) solution: distribution π

π(x , y , z ,¬pxy ,¬pxz) = 0.1 π(x , y , z , pxy ,¬pxz) = 0.4
π(x , y , z ,¬pxy , pxz) = 0.5 π(v) = 0 for other 29 valuations

Finger, Le Bras, Gomes, Selman Cornell/USP
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Solving PSAT

Algebraic formulation for Γ(s̄, x̄) ∪ {P(si ) = pi |1 ≤ i ≤ k}:
find A(k+1)×2n a {0, 1}-matrix, π2n×1 ≥ 0 such that

Aπ =

[

1
p

]

, 1st line:
∑

πj = 1

if πj > 0 then column Aj is Γ-consistent.
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Solving PSAT

Algebraic formulation for Γ(s̄, x̄) ∪ {P(si ) = pi |1 ≤ i ≤ k}:
find A(k+1)×2n a {0, 1}-matrix, π2n×1 ≥ 0 such that

Aπ =

[

1
p

]

, 1st line:
∑

πj = 1

if πj > 0 then column Aj is Γ-consistent.
Solved by linear program (exponentially sized)

minimize c ′π

subject to Aπ = p and π ≥ 0

c : cost vector, cj = 1 if Aj is Γ-inconsistent; cj = 0 otherwise
Solution when c ′π = 0 (may not be unique)
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Solving PSAT

Algebraic formulation for Γ(s̄, x̄) ∪ {P(si ) = pi |1 ≤ i ≤ k}:
find A(k+1)×2n a {0, 1}-matrix, π2n×1 ≥ 0 such that

Aπ =

[

1
p

]

, 1st line:
∑

πj = 1

if πj > 0 then column Aj is Γ-consistent.
Solved by linear program (exponentially sized)

minimize c ′π

subject to Aπ = p and π ≥ 0

c : cost vector, cj = 1 if Aj is Γ-inconsistent; cj = 0 otherwise
Solution when c ′π = 0 (may not be unique)
Theorem: Γ ∪ {P(si ) = pi |1 ≤ i ≤ k} is P-satisfiable =⇒
there is π with at most k + 1 values πj > 0 (PSAT is
NP-complete)
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SAT-based column generation

Goal: implicit representation of exponential-sized system

Simplex algorithm: at each iteration i , store A
(i)
(k+1)×(k+1).

Compute new column s(i) with a SAT-formula Γ ∪∆ such
that:

Column generated s(i) is Γ-consistent
Cost does not increase: inequality over {0, 1}-variables,
converted to a SAT formula ∆

PSAT instance is P-unsat if Γ ∪∆ is unsat.

Finger, Le Bras, Gomes, Selman Cornell/USP
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SAT-based column generation

Goal: implicit representation of exponential-sized system

Simplex algorithm: at each iteration i , store A
(i)
(k+1)×(k+1).

Compute new column s(i) with a SAT-formula Γ ∪∆ such
that:

Column generated s(i) is Γ-consistent
Cost does not increase: inequality over {0, 1}-variables,
converted to a SAT formula ∆

PSAT instance is P-unsat if Γ ∪∆ is unsat.
PSAT Phase-transition [Finger & De Bona 2011]
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The Interface Between Logic/SAT and Linear

Algebra

From the simplex method, reduced cost of inserting a column
s = [1 s1 . . . sk ]

′ into A:

cs − c ′AA
−1s ≤ 0

cs is the cost of the new column; cs = 0 for PSAT.

cA: (column) vector of costs of the columns of A

Use [Warners 98] method to convert inequality to SAT
formula ∆

Also, s must be Γ(s; x)-consistent

SAT-solver: obtain v s.t. v(Γ ∪∆) = 1

v(s) is the new column. Apply simplex merge to insert v(s) in
A, generating A∗ s. t. A∗π∗ = p, π∗ ≥ 0

Finger, Le Bras, Gomes, Selman Cornell/USP
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Example of PSAT solution

Add variables for each soft violation: sx , sy , sz .

Γ =

{

x , y , z , ¬pxy ∨ ¬pxz ,
(x ∧ ¬pxy ∧ ¬pxz) → sx , (y ∧ ¬pxy ) → sy , (z ∧ ¬pxz) → sz

}

Ψ = { P(sx) = 0.25, P(sy ) = 0.6, P(sz) = 0.6 }

Iteration 0:

sx
sy
sz









1 1 1 1
0 0 0 1
0 0 1 1
0 1 1 1









·









0.4
0

0.35
0.25









=









1
0.25
0.60
0.60









cost(0) = 0.4
b(0) = [1 0 1 0]′ : col 3
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Example of PSAT solution

Add variables for each soft violation: sx , sy , sz .

Γ =

{

x , y , z , ¬pxy ∨ ¬pxz ,
(x ∧ ¬pxy ∧ ¬pxz) → sx , (y ∧ ¬pxy ) → sy , (z ∧ ¬pxz) → sz

}

Ψ = { P(sx) = 0.25, P(sy ) = 0.6, P(sz) = 0.6 }

Iteration 1:

sx
sy
sz









1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1









·









0.05
0.35
0.35
0.25









=









1
0.25
0.60
0.60









cost(1) = 0.05
b(1) = [1 1 0 1]′ : col 1
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Example of PSAT solution

Add variables for each soft violation: sx , sy , sz .

Γ =

{

x , y , z , ¬pxy ∨ ¬pxz ,
(x ∧ ¬pxy ∧ ¬pxz) → sx , (y ∧ ¬pxy ) → sy , (z ∧ ¬pxz) → sz

}

Ψ = { P(sx) = 0.25, P(sy ) = 0.6, P(sz) = 0.6 }

Iteration 2:

sx
sy
sz









1 1 1 1
1 0 0 1
0 0 1 1
1 1 0 1









·









0.05
0.35
0.40
0.20









=









1
0.25
0.60
0.60









cost(2) = 0
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Optimizing PSAT solutions

Solutions to PSAT are not unique

First optimization phase: determines if constraints are solvable

Second optimization phase to obtain a distribution with
desirable properties.

A different objective (cost) function

Finger, Le Bras, Gomes, Selman Cornell/USP
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Minimizing Expected Violations

Idea: minimize the expected number of soft constraints
violated by each valuation, S(v)

E (S) =
∑

vi |vi (Γ)=1

S(vi )π(vi )

Theorem: Every linear function of a model (valuation) has
constant expected value for any PSAT solution

In particular, E (S) is constant, no point in minimizing it

Any other model linear function is not a candidate for
minimization

Finger, Le Bras, Gomes, Selman Cornell/USP
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Minimizing Variance

Idea: penalize high S , minimize E (S2)

Lemma: The distribution that minimizes E (S2) also
minimizes variance, Var(S) = E ((S − E (S))2)

oPSAT is a second phase minimization whose objective
function is E (S2)

Problem: computing a SAT formula that decreases cost is
harder than in PSAT

oPSAT needs a more elaborate interface logic/linear algebra

Finger, Le Bras, Gomes, Selman Cornell/USP
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oPSAT Cost Minimization Strategy

Reduced cost: cs − cAA
−1s ≤ 0

In PSAT, cs = 0

In oPSAT, cs ∈ {0, 1, 4, . . . , k2, (k + 1)2}

Strategy: k + 2 iterations of optimization, one for each
possible number of soft violations

At the end, we obtain a distribution with minimal variance

Finger, Le Bras, Gomes, Selman Cornell/USP
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oPSAT Cost Minimization Strategy

Reduced cost: cs − cAA
−1s ≤ 0

In PSAT, cs = 0

In oPSAT, cs ∈ {0, 1, 4, . . . , k2, (k + 1)2}

Strategy: k + 2 iterations of optimization, one for each
possible number of soft violations

At the end, we obtain a distribution with minimal variance

sx
sy
sz









1 1 1 1
1 0 0 0
0 0 1 1
1 1 0 1









·









0.25
0.15
0.40
0.20









=









1
0.25
0.60
0.60









E(S2) = 2.35

If one valuation has to be chosen, choose one with maximal probability

Finger, Le Bras, Gomes, Selman Cornell/USP
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Problem Definition

Finger, Le Bras, Gomes, Selman Cornell/USP
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Problem Modeling

Find an association of peak angles to phases, respecting
structural constraints, such that the probability of sample point
defect is limited.
Some structural constraints:

At most 3 phases per sample point i

Shifting factors between peaks in neighbor sample points must
be within [Smin, Smax ]: potential edges

2 directions in Grid: NS, EW; at most one edge in each
direction; connected peaks in same phase

Peak with no edge = peak defect. Sample point with peak
defect = point defect (soft violation)

Sample points are embedded into a connected graph GK per
phases K

Finger, Le Bras, Gomes, Selman Cornell/USP
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Variables in oPSAT Encoding

xp,k , peak p belongs to phase k

zi ,k , sample point i has a peak in phase k , zi ,k =
∨

p∈G(i) xp,k

ypp′k , p is paired with p′ in k , ypp′k → xpk ∧ xp′k
Shift direction of phase k : D1k ∈ {N, S} and D2k ∈ {E ,W }
dp, peak p is not paired to any other peak, defect.
di , sample point containing defect, soft constraint

p0

i

i’

i’’

i’’

i’

i

Np,N

p

p2

p1

p
ypp’k=1

dp=1p

xpk=0

xpk=1

p’

Finger, Le Bras, Gomes, Selman Cornell/USP
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Formulas in oPSAT Encoding

A peak is assigned to at most one phase,
∑

k xpk ≤ 1

An unassigned peak is considered unmatched, (
∨

k xpk) ∨ dp

Non-defective peaks are paired with a neighboring peak,

xpk →
(

∨

p′ ypp′k

)

If two adjacent samples share a phase, each peak of one must
be paired with a peak of the other.

Relaxed form of convex connectivity: if any two samples
involve a given phase, there should be a sample in between
them that involves this phase as well.

Finger, Le Bras, Gomes, Selman Cornell/USP
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Implementation

Implementated in C++

Linear Solver uses blas and lapack

SAT-solver: minisat

PSAT formula (DIMACS extension) generated by C++
formula generator

P(dp) ≤ 2% =⇒ P(di ) ≤ 1− (1− P(dp))
Li

Input: Peaks at sample point

Output: oPSAT most probable model

Compare with SMT implementation in SAT 2012

psat.sourceforge.net

Finger, Le Bras, Gomes, Selman Cornell/USP
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Experimental Results

Dataset SMT oPSAT

System P L∗ K #Peaks Time(s) Time(s) Accuracy

Al/Li/Fe 28 6 6 170 346 5.3 84.7%
Al/Li/Fe 28 8 6 424 10076 8.8 90.5%
Al/Li/Fe 28 10 6 530 28170 12.6 83.0%
Al/Li/Fe 45 7 6 651 18882 121.1 82.0%
Al/Li/Fe 45 8 6 744 46816 128.0 80.3%

The accuracy of SMT is 100%

P : n. of sample points; L∗: the average n, of peaks per phase

K : n. of basis patterns; #Peaks: overall n. of peaks

#Aux variables > 10 000

Finger, Le Bras, Gomes, Selman Cornell/USP
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Conclusions and the Future

oPSAT can be effectively implemented to deal with hard and
soft constraints

Can be successfully applied to non-trivial problems of
materials discovery with acceptable precision and superior run
times than existing methods

Other forms of logic-probabilistic inference are under
investigation

Finger, Le Bras, Gomes, Selman Cornell/USP
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