MOTI	VATION	PSAI	OPSAI	APPLICATION	CONCLUSION
	Sc	DLUTIONS F	OR HARD A	ND SOFT	

Solutions for hard and Soft Constraints Using Optimized Probabilistic Satisfiability

Marcelo Finger^{1,2}, Ronan Le Bras¹, Carla P. Gomes¹, Bart Selman¹

¹Department of Computer Science, Cornell University

²On leave from: Department of Computer Science Institute of Mathematics and Statistics University of Sao Paulo, Brazil

July 2013

Motivation	PSAT	oPSAT	Application	Conclusion
TOPICS				

2 Probabilistic Satisfiability

OPTIMIZING PROBABILITY DISTRIBUTIONS WITH OPSAT

OPSAT AND COMBINATORIAL MATERIALS DISCOVERY

6 CONCLUSIONS

FINGER, LE BRAS, GOMES, SELMAN HARDSOFT & PSAT

MOTIVATION	PSAT	oPSAT	Application	Conclusion
NEXT TO	PIC			

O MOTIVATION

- **PROBABILISTIC SATISFIABILITY**
- **OPTIMIZING PROBABILITY DISTRIBUTIONS WITH OPSAT**
- OPSAT AND COMBINATORIAL MATERIALS DISCOVERY

6 Conclusions

MOTIVATION	PSAT	oPSAT	Application	Conclusion
MOTIVAT	NOI			

- Practical problems combine real-world hard constraints with soft constraints
- Soft constraints: preferences, uncertainties, flexible requirements
- We explore probabilistic logic as a mean of dealing with combined soft and hard constraints

Application Conclusion	oPSAT	PSAT	MOTIVATION
			GOALS
			GOALS

- Aim: Combine Logic and Probabilistic reasoning to deal with Hard (L) and Soft (P) constraints
- Method: develop optimized Probabilistic Satisfiability (oPSAT)
- Application: Demonstrate effectiveness on a real-world reasoning task in the domain of Materials Discovery.

Motivation	PSAT	opsat	Application	Conclusion
AN EXAN	JPLE			

SUMMER COURSE ENROLLMENT

m students and *k* summer courses.

Potential team mates, to develop coursework. Constraints:

HARD Coursework to be done alone or in pairs. Students must enroll in at least one and at most three courses.

There is a limit of ℓ students per course.

SOFT Avoid having students with no teammate.

Motivation	PSAT	oPSAT	Application	Conclusion
A T				

AN EXAMPLE

SUMMER COURSE ENROLLMENT

m students and *k* summer courses.

Potential team mates, to develop coursework. Constraints:

HARD Coursework to be done alone or in pairs. Students must enroll in at least one and at most three courses.

There is a limit of ℓ students per course.

SOFT Avoid having students with no teammate.

In our framework: P(student with no team mate) "minimal" or bounded

MOTIVATION	PSAT	oPSAT	Application	Conclusion
Commune	Tooro I.			

COMBINING LOGIC AND PROBABILITY

• Many proposals in the literature

- Markov Logic Networks [Richardson & Domingos 2006]
- Probabilistic Inductive Logic Prog [De Raedt et. al 2008]
- Relational Models [Friedman et al 1999], etc

MOTIVATION	PSAT	opsat	Application	Conclusion

Combining Logic and Probability

- Many proposals in the literature
 - Markov Logic Networks [Richardson & Domingos 2006]
 - Probabilistic Inductive Logic Prog [De Raedt et. al 2008]
 - Relational Models [Friedman et al 1999], etc
- Our choice: Probabilistic Satisfiability (PSAT)
 - Natural extension of Boolean Logic
 - Desirable properties, e.g. respects Kolmogorov axioms
 - Probabilistic reasoning free of independence presuppositions

MOTIVATION	PSAT	opsat	Application	Conclusion

Combining Logic and Probability

- Many proposals in the literature
 - Markov Logic Networks [Richardson & Domingos 2006]
 - Probabilistic Inductive Logic Prog [De Raedt et. al 2008]
 - Relational Models [Friedman et al 1999], etc
- Our choice: Probabilistic Satisfiability (PSAT)
 - Natural extension of Boolean Logic
 - Desirable properties, e.g. respects Kolmogorov axioms
 - Probabilistic reasoning free of independence presuppositions
- What is PSAT?

Motivation	PSAT	oPSAT	Application	Conclusion
NEXT TOP	IC			

MOTIVATION

PROBABILISTIC SATISFIABILITY

OPTIMIZING PROBABILITY DISTRIBUTIONS WITH OPSAT

O OPSAT AND COMBINATORIAL MATERIALS DISCOVERY

6 Conclusions

FINGER, LE BRAS, GOMES, SELMAN HARDSOFT & PSAT

Motivation	PSAT	opsat	Application	CONCLUSION

IS PSAT A ZOMBIE IDEA?

An idea that refuses to die!

FINGER, LE BRAS, GOMES, SELMAN HARDSOFT & PSAT CORNELL/USP

Motivation	PSAT	oPSAT	Application	Conclusion
A BRIEF	HISTORY (OF PSAT		

- Proposed by [Boole 1854], On the Laws of Thought
- Rediscovered several times since Boole
 - De Finetti [1937, 1974], Good [1950], Smith [1961]
 - Studied by Hailperin [1965]
 - Nilsson [1986] (re)introduces PSAT to AI
 - PSAT is NP-complete [Georgakopoulos et. al 1988]
 - Nilsson [1993]: "complete impracticability" of PSAT computation
 - Many other works; see Hansen & Jaumard [2000]

MOTIVATION

PSAT

oPSA

Applicatio

CONCLUSION

OR A WILD AMAZONIAN FLOWER?

Awaits special conditions to bloom!

(Linear programming + SAT-based techniques)

FINGER, LE BRAS, GOMES, SELMAN HARDSOFT & PSAT CORNELL/USP

Motivation	PSAT	oPSAT	Application	Conclusion
THE SET	TING			

- Formulas $\alpha_1, \ldots, \alpha_\ell$ over logical variables $\mathcal{P} = \{x_1, \ldots, x_n\}$
- Propositional valuation $v:\mathcal{P} \to \{0,1\}$

Motivation	PSAT	oPSAT	Application	Conclusion
THE SET	TING			

- Formulas $\alpha_1, \ldots, \alpha_\ell$ over logical variables $\mathcal{P} = \{x_1, \ldots, x_n\}$
- Propositional valuation $v: \mathcal{P} \to \{0, 1\}$
- A probability distribution over propositional valuations

$$\pi: V \rightarrow [0,1]$$

$$\sum_{i=1}^{2^n} \pi(v_i) = 1$$

Motivation	PSAT	oPSAT	Application	Conclusion
THE SET	TING			

- Formulas $\alpha_1, \ldots, \alpha_\ell$ over logical variables $\mathcal{P} = \{x_1, \ldots, x_n\}$
- Propositional valuation $v: \mathcal{P} \to \{0, 1\}$
- A probability distribution over propositional valuations

$$\pi: V \rightarrow [0,1]$$

$$\sum_{i=1}^{2^n} \pi(v_i) = 1$$

 $\bullet\,$ Probability of a formula α according to $\pi\,$

$$P_{\pi}(\alpha) = \sum \{\pi(v_i) | v_i(\alpha) = 1\}$$

Motivation	PSAT	oPSAT	Application	Conclusion
THE PS.	AT Proble	EM		

- Consider ℓ formulas $\alpha_1, \ldots, \alpha_\ell$ defined on n atoms $\{x_1, \ldots, x_n\}$
- A PSAT problem Σ is a set of ℓ restrictions

$$\Sigma = \{ P(\alpha_i) \stackrel{\leq}{=} p_i | 1 \le i \le \ell \}$$

• Probabilistic Satisfiability: is there a π that satisfies Σ ?

Motivation	PSAT	oPSAT	Application	Conclusion
THE PSA	AT Proble	ΞM		

- Consider ℓ formulas $\alpha_1, \ldots, \alpha_\ell$ defined on n atoms $\{x_1, \ldots, x_n\}$
- A PSAT problem Σ is a set of ℓ restrictions

$$\Sigma = \{ P(\alpha_i) \stackrel{\leq}{=} p_i | 1 \le i \le \ell \}$$

• Probabilistic Satisfiability: is there a π that satisfies Σ ?

• In our framework, $\ell = m + k$, $\Sigma = \Gamma \cup \Psi$: HARD $\Gamma = \{\alpha_1, \dots, \alpha_m\}$, $P(\alpha_i) = 1$ (clauses) SOFT $\Psi = \{P(s_i) \le p_i | 1 \le i \le k\}$ s_i atomic; p_i given, learned or minimized

Motivation	PSAT	opsat	Application	Conclusion

EXAMPLE CONTINUED

Only one course, three student enrollments: x, y and zPotential partnerships: p_{xy} and p_{xz} , mutually exclusive. Hard constraint

$$P(x \wedge y \wedge z \wedge \neg (p_{xy} \wedge p_{xz})) = 1$$

Soft constraints

$$\begin{array}{lll} P(x \wedge \neg p_{xy} \wedge \neg p_{xz}) &\leq & 0.25 \\ P(y \wedge \neg p_{xy}) &\leq & 0.60 \\ P(z \wedge \neg p_{xz}) &\leq & 0.60 \end{array}$$

Motivation	PSAT	opsat	Application	Conclusion

EXAMPLE CONTINUED

Only one course, three student enrollments: x, y and zPotential partnerships: p_{xy} and p_{xz} , mutually exclusive. Hard constraint

$$P(x \wedge y \wedge z \wedge \neg (p_{xy} \wedge p_{xz})) = 1$$

Soft constraints

$$\begin{array}{lll} P(x \wedge \neg p_{xy} \wedge \neg p_{xz}) &\leq & 0.25 \\ P(y \wedge \neg p_{xy}) &\leq & 0.60 \\ P(z \wedge \neg p_{xz}) &\leq & 0.60 \end{array}$$

(Small) solution: distribution π

$$\begin{aligned} &\pi(x, y, z, \neg \rho_{xy}, \neg \rho_{xz}) = 0.1 & \pi(x, y, z, \rho_{xy}, \neg \rho_{xz}) = 0.4 \\ &\pi(x, y, z, \neg \rho_{xy}, \rho_{xz}) = 0.5 & \pi(v) = 0 \text{ for other } 29 \text{ valuations} \end{aligned}$$

Motivation	PSAT	opsat	Application	Conclusion
SOLVING	PSAT			

• Algebraic formulation for $\Gamma(\bar{s}, \bar{x}) \cup \{P(s_i) = p_i | 1 \le i \le k\}$: find $A_{(k+1) \times 2^n}$ a $\{0, 1\}$ -matrix, $\pi_{2^n \times 1} \ge 0$ such that

$$A\pi = \begin{bmatrix} 1 \\ p \end{bmatrix}$$
, 1st line: $\sum \pi_j = 1$

if $\pi_j > 0$ then column A^j is Γ -consistent.

Motivation	PSAT	oPSAT	Application	Conclusion
SOLVING	PSAT			

• Algebraic formulation for $\Gamma(\bar{s}, \bar{x}) \cup \{P(s_i) = p_i | 1 \le i \le k\}$: find $A_{(k+1) \times 2^n}$ a $\{0, 1\}$ -matrix, $\pi_{2^n \times 1} \ge 0$ such that

$$A\pi = \begin{bmatrix} 1 \\ p \end{bmatrix}$$
, 1st line: $\sum \pi_j = 1$

if $\pi_j > 0$ then column A^j is Γ -consistent.

• Solved by linear program (exponentially sized)

 $\begin{array}{ll} \text{minimize} & c'\pi \\ \text{subject to} & A\pi = p \text{ and } \pi \geq 0 \end{array}$

c: cost vector, $c_j = 1$ if A^j is Γ -inconsistent; $c_j = 0$ otherwise Solution when $c'\pi = 0$ (may not be unique)

Motivation	PSAT	oPSAT	Application	Conclusion
SOLVING	PSAT			

• Algebraic formulation for $\Gamma(\bar{s}, \bar{x}) \cup \{P(s_i) = p_i | 1 \le i \le k\}$: find $A_{(k+1) \times 2^n}$ a $\{0, 1\}$ -matrix, $\pi_{2^n \times 1} \ge 0$ such that

$$A\pi = \begin{bmatrix} 1 \\ p \end{bmatrix}$$
, 1st line: $\sum \pi_j = 1$

if $\pi_j > 0$ then column A^j is Γ -consistent.

• Solved by linear program (exponentially sized)

$$\begin{array}{ll} \text{minimize} & c'\pi\\ \text{subject to} & A\pi = p \text{ and } \pi \geq 0 \end{array}$$

c: cost vector, $c_j = 1$ if A^j is Γ -inconsistent; $c_j = 0$ otherwise Solution when $c'\pi = 0$ (may not be unique)

Theorem: Γ ∪ {P(s_i) = p_i|1 ≤ i ≤ k} is P-satisfiable ⇒ there is π with at most k + 1 values π_j > 0 (PSAT is NP-complete)

FINGER, LE BRAS, GOMES, SELMAN

MOTIVATION PSAT OPSAT APPLICATION CONCLUSION

SAT-BASED COLUMN GENERATION

- Goal: implicit representation of exponential-sized system
- Simplex algorithm: at each iteration *i*, store A⁽ⁱ⁾_{(k+1)×(k+1)}. Compute new column s⁽ⁱ⁾ with a SAT-formula Γ ∪ Δ such that:
 - Column generated $s^{(i)}$ is Γ -consistent
 - \bullet Cost does not increase: inequality over $\{0,1\}\text{-variables},$ converted to a SAT formula Δ
- PSAT instance is P-unsat if $\Gamma \cup \Delta$ is unsat.

MOTIVATION PSAT OPSAT APPLICATION CONCLUSION

SAT-BASED COLUMN GENERATION

- Goal: implicit representation of exponential-sized system
- Simplex algorithm: at each iteration *i*, store A⁽ⁱ⁾_{(k+1)×(k+1)}. Compute new column s⁽ⁱ⁾ with a SAT-formula Γ ∪ Δ such that:
 - Column generated $s^{(i)}$ is Γ -consistent
 - \bullet Cost does not increase: inequality over $\{0,1\}\text{-variables},$ converted to a SAT formula Δ
- PSAT instance is P-unsat if $\Gamma \cup \Delta$ is unsat.
- PSAT Phase-transition [Finger & De Bona 2011]

Motivation	PSAT	oPSAT	Application	Conclusion
THE INTERF.	ACE BET	WEEN LOGI	C/SAT AND	LINEAR
ALGEBRA				

From the simplex method, reduced cost of inserting a column s = [1 s₁...s_k]' into A:

$$c_s - c'_A A^{-1} s \leq 0$$

- c_s is the cost of the new column; $c_s = 0$ for PSAT.
- c_A : (column) vector of costs of the columns of A
- Use [Warners 98] method to convert inequality to SAT formula Δ
- Also, s must be Γ(s; x)-consistent
- SAT-solver: obtain v s.t. $v(\Gamma \cup \Delta) = 1$
- v(s) is the new column. Apply simplex merge to insert v(s) in A, generating A* s. t. A*π* = p, π* ≥ 0

Motivation	PSAT	oPSAT	Application	CONCLUSION

EXAMPLE OF PSAT SOLUTION

Add variables for each soft violation: s_x, s_y, s_z .

$$\begin{split} & \Gamma = \left\{ \begin{array}{c} x, \ y, \ z, \ \neg p_{xy} \lor \neg p_{xz}, \\ & (x \land \neg p_{xy} \land \neg p_{xz}) \rightarrow s_x, \ (y \land \neg p_{xy}) \rightarrow s_y, \ (z \land \neg p_{xz}) \rightarrow s_z \end{array} \right\} \\ & \Psi = \left\{ \begin{array}{c} P(s_x) = 0.25, \ P(s_y) = 0.6, \ P(s_z) = 0.6 \end{array} \right\} \end{split}$$

Iteration 0:

Motivation	PSAT	oPSAT	Application	CONCLUSION

EXAMPLE OF PSAT SOLUTION

Add variables for each soft violation: s_x, s_y, s_z .

$$\begin{split} & \Gamma = \left\{ \begin{array}{c} x, \ y, \ z, \ \neg p_{xy} \lor \neg p_{xz}, \\ & (x \land \neg p_{xy} \land \neg p_{xz}) \rightarrow s_x, \ (y \land \neg p_{xy}) \rightarrow s_y, \ (z \land \neg p_{xz}) \rightarrow s_z \end{array} \right\} \\ & \Psi = \left\{ \begin{array}{c} P(s_x) = 0.25, \ P(s_y) = 0.6, \ P(s_z) = 0.6 \end{array} \right\} \end{split}$$

Iteration 1:

$$\begin{array}{c} s_{\chi} \\ s_{y} \\ s_{z} \end{array} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.05 \\ 0.35 \\ 0.25 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.25 \\ 0.60 \\ 0.60 \end{bmatrix} \\ \begin{array}{c} \cosh(1) \\ (\cosh(1) \\ (\cosh(1) \\ (\cosh(1) \\ (\cosh(1) \\ (\cosh(1) \\ (\cosh(1) \\$$

Motivation	PSAT	oPSAT	Application	CONCLUSION

EXAMPLE OF PSAT SOLUTION

Add variables for each soft violation: s_x, s_y, s_z .

$$\begin{split} & \Gamma = \left\{ \begin{array}{c} x, \ y, \ z, \ \neg p_{xy} \lor \neg p_{xz}, \\ (x \land \neg p_{xy} \land \neg p_{xz}) \to s_x, \ (y \land \neg p_{xy}) \to s_y, \ (z \land \neg p_{xz}) \to s_z \end{array} \right\} \\ & \Psi = \left\{ \begin{array}{c} P(s_x) = 0.25, \ P(s_y) = 0.6, \ P(s_z) = 0.6 \end{array} \right\} \end{split}$$

Iteration 2:

$$s_{x} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ s_{y} \\ s_{z} \end{bmatrix} \cdot \begin{bmatrix} 0.05 \\ 0.35 \\ 0.40 \\ 0.20 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.25 \\ 0.60 \\ 0.60 \end{bmatrix}$$

$$cost^{(2)} = 0$$

Motivation	PSAT	oPSAT	Application	Conclusion
NEXT TO	PIC			
🚺 Мот	IVATION			
2 Proi	BABILISTIC S	ATISFIABILITY		
Орті	MIZING PRO	BABILITY DIST	TRIBUTIONS WIT	н oPSAT
ops.	AT AND COM	MBINATORIAL	Materials Dis	COVERY

6 CONCLUSIONS

Motivation	PSAT	oPSAT	Application	Conclusion
Optimize	NG PSAT	SOLUTIONS		

- Solutions to PSAT are not unique
- First optimization phase: determines if constraints are solvable
- Second optimization phase to obtain a distribution with desirable properties.
- A different objective (cost) function

• Idea: minimize the expected number of soft constraints violated by each valuation, S(v)

$$E(S) = \sum_{v_i \mid v_i(\Gamma) = 1} S(v_i) \pi(v_i)$$

- **Theorem:** Every linear function of a model (valuation) has constant expected value for any PSAT solution
- In particular, E(S) is constant, no point in minimizing it
- Any other **model linear function** is not a candidate for minimization

Motivation	PSAT	oPSAT	Application	Conclusion
λ σ	· · · · · · · · · ·			

MINIMIZING VARIANCE

- Idea: penalize high S, minimize $E(S^2)$
- Lemma: The distribution that minimizes $E(S^2)$ also minimizes variance, $Var(S) = E((S E(S))^2)$
- **oPSAT** is a second phase minimization whose objective function is $E(S^2)$
- Problem: computing a SAT formula that decreases cost is harder than in PSAT
- oPSAT needs a more elaborate interface logic/linear algebra

Motivation	PSAT	oPSAT	Application	Conclusion
oPSAT	Cost Mini	MIZATION S'	TRATEGY	

- Reduced cost: $c_s c_A A^{-1} s \leq 0$
- In PSAT, $c_s = 0$
- In oPSAT, $c_s \in \{0,1,4,\ldots,k^2,(k+1)^2\}$
- Strategy: *k* + 2 iterations of optimization, one for each possible number of soft violations
- At the end, we obtain a distribution with minimal variance

Motivation	PSAT	oPSAT	Application	Conclusion
opsat (Cost Mini	mization S	TRATEGY	

- Reduced cost: $c_s c_A A^{-1} s \leq 0$
- In PSAT, $c_s = 0$
- In oPSAT, $c_s \in \{0,1,4,\ldots,k^2,(k+1)^2\}$
- Strategy: *k* + 2 iterations of optimization, one for each possible number of soft violations
- At the end, we obtain a distribution with minimal variance

$$S_{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0.25 \\ 0.15 \\ 0.40 \\ 0.20 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.25 \\ 0.60 \\ 0.60 \end{bmatrix}$$
$$E(S^{2}) = 2.35$$

If one valuation has to be chosen, choose one with maximal probability

Motivation	PSAT	oPSAT	Application	Conclusion
NEXT TO	OPIC			
о Мот	TIVATION			
2 Pro	BABILISTIC S	ATISFIABILITY	Y	
Opt	imizing Pro	BABILITY DIS	TRIBUTIONS WI	гн оPSAT

OPSAT AND COMBINATORIAL MATERIALS DISCOVERY

6 Conclusions

FINGER, LE BRAS, GOMES, SELMAN HARDSOFT & PSAT

Motivation	PSAT	oPSAT	Application	Conclusion

PROBLEM DEFINITION

Motivation	PSAT	oPSAT	Application	Conclusion
Decerer	Man			

PROBLEM MODELING

Find an association of **peak angles to phases**, respecting structural constraints, such that the **probability of sample point defect is limited**.

Some structural constraints:

- At most 3 phases per sample point *i*
- Shifting factors between peaks in neighbor sample points must be within [S_{min}, S_{max}]: potential edges
- 2 directions in Grid: NS, EW; at most one edge in each direction; connected peaks in same phase
- Peak with no edge = peak defect. Sample point with peak defect = point defect (soft violation)
- Sample points are embedded into a connected graph G_K per phases K

MOTIVATION PSAT OPSAT APPLICATION CONCLUSION VARIABLES IN OPSAT ENCODING

- $x_{p,k}$, peak p belongs to phase k
- $z_{i,k}$, sample point *i* has a peak in phase *k*, $z_{i,k} = \bigvee_{p \in G(i)} x_{p,k}$
- $y_{pp'k}$, p is paired with p' in k, $y_{pp'k} \rightarrow x_{pk} \wedge x_{p'k}$
- Shift direction of phase k: $D_{1k} \in \{N, S\}$ and $D_{2k} \in \{E, W\}$
- d_p , peak p is not paired to any other peak, **defect**.
- d_i, sample point containing defect, soft constraint

Motivation	PSAT	oPSAT	Application	Conclusion
	_ ~			
	D D D D C	AT ENGODI	NC	

FORMULAS IN OPSAT ENCODING

- A peak is assigned to at most one phase, $\sum_k x_{pk} \leq 1$
- An unassigned peak is considered unmatched, $(\bigvee_k x_{pk}) \lor d_p$
- Non-defective peaks are paired with a neighboring peak, $x_{pk} \rightarrow \left(\bigvee_{p'} y_{pp'k}\right)$
- If two adjacent samples share a phase, each peak of one must be paired with a peak of the other.
- Relaxed form of convex connectivity: if any two samples involve a given phase, there should be a sample in between them that involves this phase as well.

Motivation	PSAT	oPSAT	Application	Conclusion
IMPLEME	NTATION			

- ${\scriptstyle \bullet} \,$ Implementated in C++
- Linear Solver uses *blas* and *lapack*
- SAT-solver: minisat
- PSAT formula (DIMACS extension) generated by C++ formula generator
- $P(d_p) \leq 2\% \Longrightarrow P(d_i) \leq 1 (1 P(d_p))^{L_i}$
- Input: Peaks at sample point
- Output: oPSAT most probable model
- Compare with SMT implementation in SAT 2012
- psat.sourceforge.net

Motivation	PSAT	oPSAT	Application	Conclusion

EXPERIMENTAL RESULTS

Dataset					SMT	oF	SAT
System	Ρ	L*	Κ	# Peaks	Time(s)	Time(s)	Accuracy
Al/Li/Fe	28	6	6	170	346	5.3	84.7%
Al/Li/Fe	28	8	6	424	10076	8.8	90.5%
Al/Li/Fe	28	10	6	530	28170	12.6	83.0%
Al/Li/Fe	45	7	6	651	18882	121.1	82.0%
Al/Li/Fe	45	8	6	744	46816	128.0	80.3%

- The accuracy of SMT is 100%
- P: n. of sample points; L^* : the average n, of peaks per phase
- K: n. of basis patterns; #Peaks: overall n. of peaks
- #Aux variables > 10 000

Motivation	PSAT	oPSAT	Application	Conclusion
NEXT TO	PIC			
🕕 Мот	IVATION			
2 Prof	BABILISTIC S	ATISFIABILIT	Y	

Optimizing Probability Distributions with oPSAT

OPSAT AND COMBINATORIAL MATERIALS DISCOVERY

Motivation	PSAT	oPSAT	Application	Conclusion
CONCLUS	IONS AND '	FHE FUTUR	RE	

- oPSAT can be effectively implemented to deal with hard and soft constraints
- Can be successfully applied to non-trivial problems of materials discovery with acceptable precision and superior run times than existing methods
- Other forms of logic-probabilistic inference are under investigation