0.0000000000000000000000000000000000000	Goals	Message Passing	Interpolation and ISI	$ ho\sigma$ PMP i	Conclusions
	0	00000000000000000000	000000000	000000	00

On the Interpolation of Product-Based Message Passing Heuristics for SAT

Oliver Gableske¹

¹Institute of Theoretical Computer Science Ulm University Germany

oliver@gableske.net https://www.gableske.net

SAT 2013, 11.07.2013

Goals	Message Passing	Interpolation and ISI	$ ho\sigma PMP^i$	Conclusions
0	000000000000000000000000000000000000000	000000000	000000	00

Outline

Goals

2 Message Passing

- Message Passing on a conceptual level
- Product-based MP heuristics

Interpolation and ISI

- Interpolation
- Indirect Structural Interpolation (ISI)
- The product-based MP Hierarchy

5 Conclusions

Goals ●	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ 000000	Conclusions
Goals				

- Provide better access to MP for the SAT community.
 - Provide a consistent notational frame to explain all currently available MP heuristics.
 - Explain the functioning of all these heuristics.
 - Explain their respective strengths and weaknesses.
 - Explain where they differ.
- Extend our knowledge about MP.
 - Provide more general/flexible MP heuristics.
 - Integrate MP into a CDCL solver (used to initialize VSIDS and phase-saving).

- Message Passing (MP) is a class of algorithms
- $\bullet~H\in \mathsf{MP}$ can be understood as variable and value ordering heuristics in the context of SAT
- $\bullet\,$ The main goal of H is to provide biases for all variables of a CNF F
- $\forall v \in \mathcal{V} : \beta_H(v) \in [-1.0, 1.0]$
- The biases can be used to guide search (CDCL or SLS)

- Message Passing (MP) is a class of algorithms
- $\bullet~H\in \mathsf{MP}$ can be understood as variable and value ordering heuristics in the context of SAT
- $\bullet\,$ The main goal of H is to provide biases for all variables of a CNF F
- $\forall v \in \mathcal{V} : \beta_H(v) \in [-1.0, 1.0]$
- The biases can be used to guide search (CDCL or SLS)
- Given the formula *F*, what does H do to compute the biases?

Example

$$F = (v_1 \lor v_2 \lor v_3) \land (v_1 \lor \bar{v_2} \lor v_3) \land (\bar{v_1} \lor \bar{v_2} \lor \bar{v_3})$$

It is helpful to understand F as a *factor graph*.

- Undirected, bipartite graph
- Two types of nodes (variable nodes (circles), clause nodes (squares))
- Two types of edges (positive edges (solid), negative edges (dashed))
- Edges constitute literal occurrences

 Goals
 Message Passing ο
 Interpolation and ISI ο
 ρσΡΜΡ⁴
 Conclusions ο

 Message Passing on a conceptual level (3)

Example

 $F = (v_1 \lor v_2 \lor v_3) \land (v_1 \lor \bar{v_2} \lor v_3) \land (\bar{v_1} \lor \bar{v_2} \lor \bar{v_3})$

- H sends around messages along the edges.
- \bullet Assume variable v is contained in clause c as literal l

Two types of messages.

 Goals
 Message Passing
 Interpolation and ISI
 ρσ PMP⁴
 Conclusions

 Message
 Passing on a conceptual level (4)

Example

$$F = (v_1 \lor v_2 \lor v_3) \land (v_1 \lor \bar{v_2} \lor v_3) \land (\bar{v_1} \lor \bar{v_2} \lor \bar{v_3})$$

1. Disrespect Messages (from variable nodes towards clause nodes):

• $\delta_H(l,c) \in [0.0, 1.0]$

• The chance that l will not satisfy \boldsymbol{c}

Intuitive meaning of $\delta_H(l,c) \approx 1.0$:

Variable v tells clause c that it cannot satisfy it.

 Goals
 Message Passing
 Interpolation and ISI
 por PMPⁱ
 Conclusions

 Message Passing on a conceptual level (5)

Example

$$F = (v_1 \lor v_2 \lor v_3) \land (v_1 \lor \bar{v_2} \lor v_3) \land (\bar{v_1} \lor \bar{v_2} \lor \bar{v_3})$$

2. Warning Messages (from clause nodes towards variable nodes):

• $\omega_H(c,v) \in [0.0, 1.0]$

• The chance that no other literal in c can satisfy c

Intuitive meaning of $\omega_H(c, v) \approx 1.0$:

Clause c is telling variable v, that it needs it to be satisfied.

 Goals
 Message Passing 00000
 Interpolation and ISI 000000
 ρσ PMP⁴
 Conclusions 000000

 Message Passing on a conceptual level (6)

Example

$$F = (v_1 \lor v_2 \lor v_3) \land (v_1 \lor \bar{v_2} \lor v_3) \land (\bar{v_1} \lor \bar{v_2} \lor \bar{v_3})$$

For all product-based MP heuristics, the waring message is computed by

$$\omega_{\mathsf{H}}(c,v) = \prod_{l \in c \setminus \{v,\bar{v}\}} \delta_{\mathsf{H}}(l,c)$$

 Goals
 Message Passing
 Interpolation and ISI
 por PMP⁴
 Conclusions

 Message Passing on a conceptual level (7)

For all product-based MP heuristics, the *cavity freedom values* are computed by

$$[0.0, 1.0] \ni S_{\mathsf{H}}(l, c) = \begin{cases} \prod_{\substack{d \in C_v^- \\ d \in C_v^-}} [1 - \omega_{\mathsf{H}}(d, v)], l = v \\ \prod_{\substack{d \in C_v^+ }} [1 - \omega_{\mathsf{H}}(d, v)], l = \bar{v} \end{cases}$$

Intuitive meaning:

How happy are the other clauses if l satisfies c?

$$[0.0, 1.0] \ni U_{\mathsf{H}}(l, c) = \begin{cases} \prod_{\substack{d \in C_v^+ \setminus \{c\}\\ d \in C_v^- \setminus \{c\}}} [1 - \omega_{\mathsf{H}}(d, v)], l = \bar{v} \end{cases}$$

Intuitive meaning:

How happy are the other clauses if l does not satisfy c?

In summary:

- Computed δ_H values allow us to compute the ω_H values
- $\bullet~{\rm Computed}~\omega_H$ values allow us to compute the $S_{\rm H}, U_{\rm H}$ values However:
 - H will not send around messages arbitrarily
 - H performs *clause updates* $\forall c \in F$
 - The ordering of the clauses in which they receive updates is determined by a random clause permutation $\pi \in S_m$

Following $\pi \in \mathcal{S}_m$, each clause is updated exactly once.

Basically, a clause update for clause c consists of three steps.

- Compute $\forall l \in c : \delta_{\mathsf{H}}(l, c)$
- $\ensuremath{ @ \textit{O} } \ensuremath{ U \text{sing the } } \delta \text{, compute } \forall v \in c: \omega_{\mathsf{H}}(c,v)$
- $\textbf{ S Using the } \omega \text{, compute } \forall l \in c: S_{\mathsf{H}}(l,c), U_{\mathsf{H}}(l,c)$

Where do the δ values come from in order to compute a clause update?

Goals	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ	Conclusions
O		0000000000	000000	00
Message	Passing on a co	onceptual level	(10)	

We need the terms of *iteration* and *cycle* to explain that.

- Doing the clause updates for all clauses exactly once is called an *iteration*.
- A cycle is a finite tuple of iterations.
- Iterations and cycles capture the notion of *passing time* while H performs its computations.
- An iteration is a single point in time, a cycle is a time-frame.

We denote the specific values computed in iteration \boldsymbol{z} of cycle \boldsymbol{y} with

- $\bullet ~_{z}^{y} \delta_{\mathsf{H}}(l,c)$
- $\bullet ~^y_z \omega_{\mathsf{H}}(c,v)$
- $\bullet \ _{z}^{y}S_{\mathsf{H}}(l,c)$
- $\bullet ~^y_z U_{\mathsf{H}}(l,c)$

Goals Message Passing 0000000000 Interpolation and ISI 000000000 ρσΡΜΡⁱ Conclusions 000000 Message Passing on a conceptual level (11)

Again, in order to compute the clause update for iteration z in cycle y

- $\textcircled{\ } \textbf{Ompute } \forall l \in c: {}^y_z \delta_{\mathsf{H}}(l,c)$
- $\textbf{ Osing the } {}^y_z \delta_{\mathsf{H}}(l,c) \text{, compute } \forall v \in c: {}^y_z \omega_{\mathsf{H}}(c,v)$
- $\textbf{ Sing the } ^y_z \omega_{\rm H}(c,v) \text{, compute } \forall l \in c: {}^y_z S_{\rm H}(l,c), {}^y_z U_{\rm H}(l,c)$

Again, where do the $_{z}^{y}\delta_{\rm H}(l,c)$ values come from in order to compute a clause update?

The initialization for cycle y happens in iteration z = 0.

- $\forall c \in F : \forall l \in c$: initialize randomly with ${}^y_0 \delta_{\mathsf{H}}(l,c) \in_R (0.0, 1.0)$
- The values for ${}^y_0\omega_{\rm H}(c,v), {}^y_0S_{\rm H}(l,c), {}^y_0U_{\rm H}(l,c)$ then directly follow with the definitions.

The clause updates for cycle y and iteration z > 0 are defined recursive.

• Rely on ${}^y_{z-1}S_{\mathsf{H}}(l,c), {}^y_{z-1}U_{\mathsf{H}}(l,c)$ in order to compute ${}^y_z\delta_{\mathsf{H}}(l,c)$.

How exactly is ${}^{y}_{z}\delta_{\mathsf{H}}(l,c)$ computed using these values?

Goals Message Passing Interpolation and ISI ρσ PMPⁱ Conclusions Message Passing on a conceptual level (12)

The initialization for cycle y happens in iteration z = 0.

- $\forall c \in F : \forall l \in c$: initialize randomly with ${}^y_0 \delta_{\mathsf{H}}(l,c) \in_R (0.0, 1.0)$
- The values for ${}^y_0\omega_{\rm H}(c,v), {}^y_0S_{\rm H}(l,c), {}^y_0U_{\rm H}(l,c)$ then directly follow with the definitions.

The clause updates for cycle y and iteration z > 0 are defined recursive.

• Rely on ${}^y_{z-1}S_{\mathsf{H}}(l,c), {}^y_{z-1}U_{\mathsf{H}}(l,c)$ in order to compute ${}^y_z\delta_{\mathsf{H}}(l,c)$.

How exactly is ${}^{y}_{z}\delta_{\mathsf{H}}(l,c)$ computed using these values?

• This must be defined by H!

For Belief Propagation (BP) this is defined as

•
$${}^{y}_{z}\delta_{\mathsf{BP}}(l,c) = \frac{{}^{y}_{z-1}U_{\mathsf{BP}}(l,c)}{{}^{y}_{z-1}U_{\mathsf{BP}}(l,c) + {}^{y}_{z-1}S_{\mathsf{BP}}(l,c)} \left(= \frac{U}{U+S} \right)$$

 Goals
 Message Passing
 Interpolation and ISI
 ρσ PMPⁱ
 Conclusions

 Message Passing on a conceptual level (14)

We now know

- ... how cycles start.
- ... how the iterations are done.

We do not know

 Goals
 Message Passing
 Interpolation and ISI
 poPMPⁱ
 Conclusions

 Message Passing on a conceptual level (14)

We now know

- ... how cycles start.
- ... how the iterations are done.

We do not know

- ... how a cycle terminates.
- What we need is an *abort condition*.

The abort conditions for a product-based MP heuristics is defined as

$$\bullet \ \forall c \in F: \forall v \in c: | {}^y_z \omega_{\mathsf{H}}(c,v) - {}^y_{z-1} \omega_{\mathsf{H}}(c,v) | < \omega_{\max}$$

• In practice $\omega_{\max} = 0.01$

The iteration of cycle \boldsymbol{y} in which the abort condition holds is denoted $\ast.$ The messages

- $\bullet \ _*^y \delta_{\mathsf{H}}(l,c)$
- $\bullet ~^y_* \omega_{\mathsf{H}}(c,v)$

are called equilibrium messages.

The ${}^{y}_{*}\omega_{\mathsf{H}}(c,v)$ are used to compute the biases for cycle y.

 Goals
 Message Passing
 Interpolation and ISI
 ρσ PMPⁱ
 Conclusions

 Message Passing on a conceptual level (16)

Computing biases is done in three steps using the ${}^y_*\omega_{\rm H}(c,v).$

 $\bullet \quad \text{Compute the variable freedom to be assigned to true } (\mathcal{T}) \text{ or false } (\mathcal{F})$

$${}^{y}\mathcal{T}_{\mathsf{H}}(v) = \prod_{c \in C_{v}^{-}} [1 - {}^{y}_{*}\omega_{\mathsf{H}}(c, v)] \quad {}^{y}\mathcal{F}_{\mathsf{H}}(v) = \prod_{c \in C_{v}^{+}} [1 - {}^{y}_{*}\omega_{\mathsf{H}}(c, v)]$$

 $\textbf{@} \quad \text{Compute magnetization values using \mathcal{T} and \mathcal{F}}$

$${}^{y}\mu_{\mathsf{H}}^{+}(v), {}^{y}\mu_{\mathsf{H}}^{-}(v), {}^{y}\mu_{\mathsf{H}}^{\pm}(v) \in [0.0, 1.0]$$

These give ${}^y\mu_{\rm H}(v)={}^y\mu_{\rm H}^+(v)+{}^y\mu_{\rm H}^-(v)+{}^y\mu_{\rm H}^\pm(v)$

Ompute the biases

$${}^{y}\beta_{\mathsf{H}}^{+}(v) = \frac{{}^{y}\mu_{\mathsf{H}}^{+}(v)}{{}^{y}\mu_{\mathsf{H}}(v)} \quad {}^{y}\beta_{\mathsf{H}}^{-}(v) = \frac{{}^{y}\mu_{\mathsf{H}}^{-}(v)}{{}^{y}\mu_{\mathsf{H}}(v)} \quad {}^{y}\beta_{\mathsf{H}}(v) = {}^{y}\beta_{\mathsf{H}}^{+}(v) - {}^{y}\beta_{\mathsf{H}}^{-}(v)$$

GoalsMessage Passing
οοοοοοοοοοοοοοοοInterpolation and ISI
οοοοοοορσ PMPⁱ
οοοοοοConclusions
οοMessage Passing on a conceptual level (17)

Where do the ${}^{y}\mu_{\rm H}^{+}(v), {}^{y}\mu_{\rm H}^{-}(v), {}^{y}\mu_{\rm H}^{\pm}(v) \in [0.0, 1.0]$ come from? Again, this must be defined by H!

For Belief Propagation (BP), this is defined as

•
$${}^{y}\mu_{\mathsf{BP}}^{+}(v) = {}^{y}\mathcal{T}_{\mathsf{BP}}(v)$$

• ${}^{y}\mu_{\mathsf{BP}}^{-}(v) = {}^{y}\mathcal{F}_{\mathsf{BP}}(v)$
• ${}^{y}\mu_{\mathsf{BP}}^{\pm}(v) = 0$
perefore ${}^{y}\mu_{-}(v) - {}^{y}\mathcal{T}_{-}(v) + {}^{y}\mathcal{F}_{-}(v)$

Therefore, ${}^{y}\mu_{\mathsf{BP}}(v) = {}^{y}\mathcal{T}_{\mathsf{BP}}(v) + {}^{y}\mathcal{F}_{\mathsf{BP}}(v).$

Finally, for BP, it is
$${}^{y}\beta_{\mathsf{BP}}(v) = rac{{}^{y}\mathcal{T}_{\mathsf{BP}}(v) - {}^{y}\mathcal{F}_{\mathsf{BP}}(v)}{{}^{y}\mathcal{T}_{\mathsf{BP}}(v) + {}^{y}\mathcal{F}_{\mathsf{BP}}(v)}$$

- All the basic MP heuristics have different strengths and weaknesses.
- Introducing MP into a solver to guide its search is problematic.
- The necessity to choose basically means: However you choose, you choose wrong!

Increase the flexibility of MP heuristics in order to overcome the "robustness problem".

How to create a more flexible MP heuristic?

Increase the flexibility of MP heuristics in order to overcome the "robustness problem".

How to create a more flexible MP heuristic?

• Interpolation!

What is it, that needs to be achieved in order to create an interpolation? Given two product-based MP heuristics H_1 and H_2 , we want an interpolation ρH^i , s.t.

- \bullet interpolation parameter $\rho \in [0.0, 1.0]$
- Setting $\rho = 0$ will make ρH^i mimic H₁, i.e. $\beta_{H_1}(v) = \beta_{\rho H}^i(v, 0)$
- Setting $\rho=1$ will make $\rho {\rm H}^i$ mimic ${\rm H}_2,$ i.e. $\beta_{{\rm H}_2}(v)=\beta^i_{\rho {\rm H}}(v,1)$
- Setting $ho \in (0.0, 1.0)$ results in a gradual adaption between H_1, H_2
 - gradually adapt the convergence behavior
 - gradually adapt the carefulness to present biases

Goals O	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ 000000	Conclusions
Interpola	tion (2)			

Equations used in all product-based MP heuristics.

During Iterations

- Disrespect message ${}^y_z \delta_{\rm H}(l,c)$
- \bullet Warning message $^y_z\omega_{\rm H}(l,c)$
- \bullet Literal cavity freedom values $_{z}^{y}S_{\mathrm{H}}(l,c),_{z}^{y}U_{\mathrm{H}}(l,c)$

After convergence, provided $_*^y\omega_{\rm H}(l,c)$

- \bullet Variable freedom ${}^{y}\mathcal{T}_{\mathsf{H}}(v), {}^{y}\mathcal{F}_{\mathsf{H}}(v)$
- Variable magnetization ${}^{y}\mu_{\rm H}^{+}(v), {}^{y}\mu_{\rm H}^{-}(v), {}^{y}\mu_{\rm H}^{\pm}(v), {}^{y}\mu_{\rm H}(v)$
- Variable bias ${}^y\beta_{\rm H}^+(v), {}^y\beta_{\rm H}^-(v), {}^y\beta_{\rm H}(v)$

Goals O	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ 000000	Conclusions
Interpola	tion (3)			

Equations that must be defined by H itself.

During Iterations

- Disrespect message $\frac{y}{z}\delta_{\mathsf{H}}(l,c)$
- \bullet Warning message $^y_z\omega_{\rm H}(l,c)$
- \bullet Literal cavity freedom values $^y_zS_{\rm H}(l,c), ^y_zU_{\rm H}(l,c)$

After convergence, provided $^y_*\omega_{\rm H}(l,c)$

- \bullet Variable freedom ${}^{y}\mathcal{T}_{\mathsf{H}}(v), {}^{y}\mathcal{F}_{\mathsf{H}}(v)$
- Variable magnetization ${}^{y}\mu_{\rm H}^{+}(v), {}^{y}\mu_{\rm H}^{-}(v), {}^{y}\mu_{\rm H}^{\pm}(v), {}^{y}\mu_{\rm H}(v)$
- \bullet Variable bias ${}^{y}\beta_{\rm H}^{+}(v), {}^{y}\beta_{\rm H}^{-}(v), {}^{y}\beta_{\rm H}(v)$

Must be defined for the interpolation.

ISI is a technique to derive ρH^i given H_1 and H_2 . It uses an interpolation parameter $\rho \in [0.0, 1.0]$. It derives

• $_z^y \delta^i_{\rho \rm H}(l,c,\rho), {^y \mu^{i+}_{\rho \rm H}(v,\rho)}, {^y \mu^{i-}_{\rho \rm H}(v,\rho)}, {^y \mu^{i\pm}_{\rho \rm H}(v,\rho)}$ given

•
$${}^{y}_{z} \delta_{\mathsf{H}_{1}}(l,c), {}^{y}\mu^{+}_{\mathsf{H}_{1}}(v), {}^{y}\mu^{-}_{\mathsf{H}_{1}}(v), {}^{y}\mu^{\pm}_{\mathsf{H}_{1}}(v)$$

•
$${}^{y}_{z}\delta_{\mathsf{H}_{2}}(l,c), {}^{y}\mu^{+}_{\mathsf{H}_{2}}(v), {}^{y}\mu^{-}_{\mathsf{H}_{2}}(v), {}^{y}\mu^{\pm}_{\mathsf{H}_{2}}(v)$$

How exatly does it work? Exemplary explanation. Assume we want to

- interpolate BP and SP
- using interpolation parameter $\rho \in [0.0, 1.0]$
- in order to derive the interpolation ρSP^i

Goals O	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ 000000	Conclusions
ISI (2)				

Step 1. derives $_{z}^{y}\delta _{\rho \mathrm{SP}}^{i}(l,c,\rho)$ using

- ${}^{y}_{z}\delta_{\mathsf{BP}}(l,c) = \frac{U}{U+S}$ • ${}^{y}\delta_{z}(l,c) = \frac{U(1-S)}{U(1-S)}$
- ${}^y_z \delta_{\mathsf{SP}}(l,c) = \frac{U(1-S)}{U(1-S)+S}$

Linearly interpolate!

Numerator:

$$(1 - \rho)\{U\} + \rho\{U(1 - S)\} = ... = U(1 - \rho S)$$

Denominator:

$$(1-\rho)\{U+S\} + \rho\{U(1-S)+S\} = \ldots = U(1-\rho S) + S$$

Combine:

$${}^{y}_{z} \delta^{i}_{\rho \mathsf{SP}}(l,c,\rho) = \frac{U(1-\rho S)}{U(1-\rho S)+S}$$

Goals	Message Passing	Interpolation and ISI	$ ho\sigma PMP^i$	Conclusions
0	000000000000000000000000000000000000000	000000000	000000	00
S (3)				

Step 2. derives ${}^{y}\mu^{i+}_{
ho{\sf SP}}(v,
ho)$ using

- ${}^{y}\mu_{\mathsf{BP}}^{+}(v) = {}^{y}\mathcal{T}_{\mathsf{BP}}(v)$ (= \mathcal{T})
- ${}^{y}\mu_{\mathsf{SP}}^{+}(v) = {}^{y}\mathcal{T}_{\mathsf{SP}}(v)(1 {}^{y}\mathcal{F}_{\mathsf{SP}}(v)) \qquad (=\mathcal{T}(1 \mathcal{F}))$

Linearly interpolate!

$$(1-\rho)\{\mathcal{T}\}+\rho\{\mathcal{T}(1-\mathcal{F})\}=\ldots=\mathcal{T}(1-\rho\mathcal{F})={}^{y}\mu_{\rho\mathsf{SP}}^{i+}(v,\rho)$$

Step 3. derives ${}^{y}\mu_{\rho SP}^{i-}(v,\rho)$ in a similar way. Step 4. derives ${}^{y}\mu_{\rho SP}^{i\pm}(v,\rho)$ in a similar way. In the end, all four defining functions for ρSP^{i} have been derived.

The product-based MP Hierarchy (1)

The basic product-based MP heuristics.

The product-based MP Hierarchy (3)

Goals O	Message Passing	Interpolation and ISI	<i>ρσ</i> ΡΜΡ ⁱ ●00000	Conclusions
$ ho\sigma PMP^i$	(1)			

- It is the most general product-based MP heuristic.
- It can mimic the behavior of all others.
- It can provide MP behavior that cannot be achieved by any other heuristic.

Each point in the parameter plane $(\rho,\sigma)\in[0.0,1.0]^2$ characterizes a specific MP behavior.

- It is the most general product-based MP heuristic.
- It can mimic the behavior of all others.
- It can provide MP behavior that cannot be achieved by any other heuristic.

Each point in the parameter plane $(\rho,\sigma)\in[0.0,1.0]^2$ characterizes a specific MP behavior.

Best behavior given? Can use: SP, ρSP^i , $\sigma EMSPG^i$, $\rho\sigma PMP^i$

Goals O	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ 00●000	Conclusions
$ ho\sigma PMP^i$	(3)			

- It is the most general product-based MP heuristic.
- It can mimic the behavior of all others.
- It can provide MP behavior that cannot be achieved by any other heuristic.

Each point in the parameter plane $(\rho, \sigma) \in [0.0, 1.0]^2$ characterizes a specific MP behavior.

Goals O	Message Passing	Interpolation and ISI	<i>ρσ</i> ΡΜΡ ⁱ 000●00	Conclusions
$ ho\sigma {\sf PMP}^i$	(4)			

- It is the most general product-based MP heuristic.
- It can mimic the behavior of all others.
- It can provide MP behavior that cannot be achieved by any other heuristic.

Each point in the parameter plane $(\rho, \sigma) \in [0.0, 1.0]^2$ characterizes a specific MP behavior.

Why is that good in order to introduce MP into a solver?

- This circumvents the need to choose from all the available MP heuristics.
- The interpolation parameters ρ,σ can be tuned automatically for each class of formulas.

In the context of a CDCL search:

- Use $\rho\sigma PMP^i$ to compute biases.
- **②** Use a specifically tuned MP behavior for the formula class.
- Use the biases to initialize VSIDS and phase-saving.

GoalsMessage PassingInterpolation and ISIρσPMPⁱConclusionsοοοοοο

Empirical results from parameter tuning

Benchmark	S/U	Solver Performance					
		Dimet	heusJW		Dimethe	eusMP	
		%	PAR10	%	PAR10	ρ	σ
battleship	S	47.4	10627.2	89.5	2130.1	0.5002	0.0025
battleship	U	55.6	8919.7	55.6	8890.4	0.4463	1.0000
em-all	S	75.0	5263.7	100.0	75.4	0.8606	0.1295
em-compact	S	0.0	20000.0	37.5	12728.5	0.9229	0.7946
em-explicit	S	75.0	5473.3	100.0	157.1	0.2932	0.2698
em-fbcolors	S	12.5	17723.3	37.5	12662.9	0.0000	0.1731
grid-pebbling	S	100.0	16.5	100.0	8.0	0.9931	0.3890
grid-pebbling	U	88.9	2226.9	100.0	4.7	0.5884	0.0035
sgen1	S	16.7	16677.7	27.8	14460.9	0.0937	0.6563
k3-r4.200	S	0.0	20000.0	100.0	22.7	0.9929	0.0004
k3-r4.237	S	0.0	20000.0	75.0	5026.8	0.9961	0.0000
k4-r9.000	S	0.0	20000.0	100.0	10.0	0.8592	0.0000
k4-r9.526	S	0.0	20000.0	100.0	5.2	0.9530	0.0000

Goals O	Message Passing	Interpolation and ISI	ρσΡΜΡ ⁱ 000000	Conclusions • O
Conclusions				

Provided better access to MP for the SAT community.

- We provided a unified and consistent notational frame to explain all currently available MP heuristics.
- We explained the functioning of all these heuristics.
- We explained their respective strengths and weaknesses.
- We explained where they differ.
- Extend our knowledge about MP.
 - We provided a hierarchy of generality regarding product-based MP heuristics.
 - We clarified what an interpolation is and how they are derived.
 - Integrated MP into a CDCL solver (used to initialize VSIDS and phase-saving) to get more empirical insight.

Thanks you for your attention!

You can send disrespect messages and questions to oliver@gableske.net

Thank you for your attention.

Check the paper

O. Gableske

On the Interpolation between Product-Based Message Passing Heuristics for SAT

published in

Theory and Application of Satisfiability Testing – SAT 2013 LNCS 7962, pp. 293–308. Springer, Heidelberg, 2013

The difference between BP and SP

With $\rho, S, U, T, F \in [0.0, 1.0]$

Disrespect messages:

•
$${}^{y}_{z}\delta_{\mathsf{BP}}(l,c) = \frac{U}{U+S}$$
 ${}^{y}_{z}\delta_{\mathsf{SP}}(l,c) = \frac{U(1-S)}{U(1-S)+S}$
• ${}^{y}_{z}\delta^{i}_{\rho\mathsf{SP}}(l,c,\rho) = \frac{U(1-\rho S)}{U(1-\rho S)+S}$

Bias computations:

•
$${}^{y}\beta_{\mathsf{BP}}(v) = \frac{\mathcal{T} - \mathcal{F}}{\mathcal{T} + \mathcal{F}}$$
 ${}^{y}\beta_{\mathsf{SP}}(v) = \frac{\mathcal{T} - \mathcal{F}}{\mathcal{T} + \mathcal{F} - \mathcal{TF}}$
• ${}^{y}\beta^{i}_{\rho\mathsf{SP}}(v,\rho) = \frac{\mathcal{T} - \mathcal{F}}{\mathcal{T} + \mathcal{F} - \rho\mathcal{TF}}$