Oliver Gableske!

Institute of Theoretical Computer Science
Ulm University
Germany

oliver@gableske.net
https://www.gableske.net

SAT 2013, 11.07.2013

1/40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 0000000000000 000000 0000000000 000000 [e]e]

Outline

© Goals

© Message Passing
@ Message Passing on a conceptual level
@ Product-based MP heuristics

© Interpolation and ISI
@ Interpolation
@ Indirect Structural Interpolation (ISI)
@ The product-based MP Hierarchy

Q roPMP!

© Conclusions

N

40

Goals Message Passing Interpolation and ISI poPMP* Conclusions

L) 0O000000000000000000 0000000000 000000 (e]o]

Goals

© Provide better access to MP for the SAT community.
e Provide a consistent notational frame to explain all currently available
MP heuristics.
e Explain the functioning of all these heuristics.
e Explain their respective strengths and weaknesses.
e Explain where they differ.

@ Extend our knowledge about MP.
e Provide more general/flexible MP heuristics.

o Integrate MP into a CDCL solver (used to initialize VSIDS and
phase-saving).

40

Goals Message Passing Interpolation and ISI poPMP* Conclusions

[e] 9000000000000 00000O 0000000000 000000 (e]o]

Message Passing on a conceptual level (1)

Message Passing (MP) is a class of algorithms

H € MP can be understood as variable and value ordering heuristics
in the context of SAT

The main goal of H is to provide biases for all variables of a CNF F'
Yo eV: pB(v) € [-1.0,1.0]
The biases can be used to guide search (CDCL or SLS)

40

Goals Message Passing Interpolation and ISI poPMP* Conclusions

[e] 9000000000000 00000O 0000000000 000000 (e]o]

Message Passing on a conceptual level (1)

Message Passing (MP) is a class of algorithms

H € MP can be understood as variable and value ordering heuristics
in the context of SAT

The main goal of H is to provide biases for all variables of a CNF F'
Yo eV: pB(v) € [-1.0,1.0]
The biases can be used to guide search (CDCL or SLS)

@ Given the formula F', what does H do to compute the biases?

40

Goals Message Passing Interpolation and ISI po‘PMPi Conclusions
o 0®00000000000000000 0000000000 000000 oo

Message Passing on a conceptual level (2)

F=(vlVUg\/vg)/\(U1V172\/v3)/\(171\/172\/173)

It is helpful to understand F' as a factor graph.

@ Undirected, bipartite graph
@ Two types of nodes (variable nodes (circles), clause nodes (squares))

e Two types of edges (positive edges (solid), negative edges (dashed))
o Edges constitute literal occurrences

Goals Message Passing Interpolation and ISI po’PMPi Conclusions
(e} 00@0000000000000000 0000000000 000000 [e]e]

Message Passing on a conceptual level (3)

F=(v1VvaVusg)A (v Vg Vus)A (01 Vo2V U3)

@ H sends around messages along the edges.

@ Assume variable v is contained in clause ¢ as literal {

Two types of messages.

6/40

Goals Message Passing Interpolation and ISI po’PMPi
(e} 0008000000000 000000 0000000000 000000

Message Passing on a conceptual level (4)

Conclusions
[e]e]

F = (vyVogVuz)A (v VoaVus)A (01 VoV o3)

d, ¢

9,
5, %)
" -

1. Disrespect Messages (from variable nodes towards clause nodes):
e dx(l,c) €[0.0,1.0]
@ The chance that [will not satisfy ¢

Intuitive meaning of dg(l,c) ~ 1.0:

Variable v tells clause c that it cannot satisfy it.

7/40

Goals Message Passing Interpolation and ISI po’PMPi Conclusions
(e} 0000@00000000000000O 0000000000 000000 [e]e]

Message Passing on a conceptual level (5)

F = (vyVogVuz)A (v VoaVus)A (01 VoV o3)

¢

%)

C3

2. Warning Messages (from clause nodes towards variable nodes):
e wy(c,v) €10.0,1.0]
@ The chance that no other literal in ¢ can satisfy ¢

Intuitive meaning of wg (¢, v) ~ 1.0:

Clause c is telling variable v, that it needs it to be satisfied.

Goals Message Passing
(e} 0000080000000 000000

F = (vi Vg Vus)A (v VoaVus)A (01 VoV os)

Interpolation and ISI paPMP? Conclusions
0000000000 000000 [e]e]

Message Passing on a conceptual level (6)

For all product-based MP heuristics, the waring message is computed by

wy(e,v) = [6ulo)
lec\{v,v}

O
O&

¢

%

9/40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 000000@000000000000 0000000000 000000 [e]e]

Message Passing on a conceptual level (7)

For all product-based MP heuristics, the cavity freedom values are
computed by

I 1t - wn(dv)]i = v
0.0,1.0] 3 Sy (l,c) = { 95
001012 54D =9 T 1 - w1 = 5
decy
Intuitive meaning:
How happy are the other clauses if [satisfies ¢?

TT 1t - wn(dv)),l = o
deC\{c}
0.0,1.0] 3 Ux(l,c) =
ORI T 1wt = 0
deCy \{c}
Intuitive meaning:

How happy are the other clauses if [does not satisfy c?
10/40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 0000000800000 000000 0000000000 000000 [e]e]

Message Passing on a conceptual level (8)

In summary:

@ Computed 0 values allow us to compute the wg values

e Computed wy values allow us to compute the Sy, Uy values
However:

@ H will not send around messages arbitrarily

@ H performs clause updates V¢ € F

@ The ordering of the clauses in which they receive updates is
determined by a random clause permutation m € S,,

11 /40

Goals Message Passing Interpolation and ISI poPMP*
o 00000000@0000000000 0000000000 000000

Message Passing on a conceptual level (9)

Following 7w € S,,,, each clause is updated exactly once.

Basically, a clause update for clause ¢ consists of three steps.

@ Compute VI € c: 6y4(l,¢c)
@ Using the 6, compute Vv € ¢ : wy(c,v)
© Using the w, compute VI € ¢ : Sy (I, ¢), Uy(l,)

Conclusions
[e]e]

Where do the § values come from in order to compute a clause update?

12 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 000000000 e000000000 0000000000 000000 [e]e]

Message Passing on a conceptual level (10)

We need the terms of iteration and cycle to explain that.

@ Doing the clause updates for all clauses exactly once is called an
iteration.

@ A cycle is a finite tuple of iterations.

@ lterations and cycles capture the notion of passing time while H
performs its computations.

@ An iteration is a single point in time, a cycle is a time-frame.
We denote the specific values computed in iteration z of cycle y with

o Uiy (l,c)

o Ywy(c,v)
o Y5y(
o YUy(lc)

13 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions

o 0000000000@00000000 0000000000 000000 (e]o]

Message Passing on a conceptual level (11)

Again, in order to compute the clause update for iteration z in cycle y
@ Compute VI € c:Y6,4(l,¢)
@ Using the ¥6,(l,c), compute Vv € ¢ : Ywy(c, v)
@ Using the Ywy,(c,v), compute Vi € ¢ : ¥S, (1, ¢), YUy (I, ¢)

Again, where do the ¥6,,(l, c) values come from in order to compute a
clause update?

14 /40

Interpolation and ISI poPMP* Conclusions

Goals Message Passing
000000 oo

[e] 00000000000 e0000000 0000000000

Message Passing on a conceptual level (12)

The initialization for cycle y happens in iteration z = 0.
@ Ve e F : Vi € c: initialize randomly with §d,,({,¢) €r (0.0,1.0)
@ The values for Jwy(c,v), §Sy (1, ¢), U4 (1, ¢) then directly follow with
the definitions.
The clause updates for cycle y and iteration z > 0 are defined recursive.

@ Rely on ,_YS,(l,¢),,_{Uy(l,c) in order to compute ¥4,,(l,).

How exactly is 40,,(l, c) computed using these values?

15 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 00000000000 e0000000 0000000000 000000 [e]e]

Message Passing on a conceptual level (12)

The initialization for cycle y happens in iteration z = 0.
@ Ve e F : Vi € c: initialize randomly with §d,,({,¢) €r (0.0,1.0)

@ The values for Jwy(c,v), §Sy (1, ¢), U4 (1, ¢) then directly follow with
the definitions.

The clause updates for cycle y and iteration z > 0 are defined recursive.

@ Rely on ,_YS,(l,¢),,_{Uy(l,c) in order to compute ¥4,,(l,).

How exactly is 40,,(l, c) computed using these values?
@ This must be defined by H!

15 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o 000000000000 e000000 0000000000 000000 [e]e]

Message Passing on a conceptual level (13)

For Belief Propagation (BP) this is defined as

Yo,) U
o Uan(l,c) = =—1Ygp (_ >
o) = A0+ ISep o) \ " U+ 3

16 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o 0000000000000 e00000 0000000000 000000 [e]e]

Message Passing on a conceptual level (14)

We now know
@ ... how cycles start.

@ ... how the iterations are done.

b Vie{l.m}: cls. updt ey initall 5 £ Y0 £ ¥S YU for o
|
}1] Vie{l,...m}: cls. updt. ¢y give \—91'6 ﬂ»f(» e, 7S YU for cy)

Y Vie{l,...m}: cls. updt. Criiy give LZS S,y BV, VS YU for Crii)

We do not know

17 /40

Goals Message Passing Interpolation and ISI poPMP*
o 0000000000000 e00000 0000000000 000000

Message Passing on a conceptual level (14)

We now know
@ ... how cycles start.

@ ... how the iterations are done.

b Vie{l.m}: cls. updt ey initall 5 £ Y0 £ ¥S YU for o
|
}1] Vie{l,...m}: cls. updt. ¢y give \—91'6 ﬂ»fm e, 7S YU for cy)

Y Vie{l,...m}: cls. updt. Criiy give LZS S,y BV, VS YU for Crii)
We do not know
@ ... how a cycle terminates.

@ What we need is an abort condition.

Conclusions

(e]o]

17 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 0000000000000 0e0000 0000000000 000000 [e]e]

Message Passing on a conceptual level (15)

The abort conditions for a product-based MP heuristics is defined as

o Vee F:Vuec: |dwy(e,v)—, Ywy(c,v)] < wmax

@ In practice wmax = 0.01
The iteration of cycle y in which the abort condition holds is denoted .
The messages

e Y5,(lc)
° ng (07 U)

are called equilibrium messages.

The Ywy,(c,v) are used to compute the biases for cycle y.

18 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 0000000000000 00e000 0000000000 000000 [e]e]

Message Passing on a conceptual level (16)

Computing biases is done in three steps using the Ywy,(c, v).

© Compute the variable freedom to be assigned to true (7°) or false (F)
() = T 1L - %onle)] "Faw) = T 11 - teonle,v)]
ceCy ceCy

@ Compute magnetization values using T and F
Y (), Y g (v), iy (v) € [0.0,1.0]

These give Yy, (v) = Y1y (v) + Y (v) + Y1 (v)
© Compute the biases

_ Ui (v)
Yy (v)

Vg (v) =)y 0y — vt () — v ()

Yyt v
B () oG

19 /40

Goals

Message Passing
o

Interpolation and ISI poPMP*
0000000000000 000e00

0000000000 000000

Message Passing on a conceptual level (17)

Where do the ¥4 (v), Yy (), Y it (v) € [0.0,1.0] come from?
Again, this must be defined by H!

For Belief Propagation (BP), this is defined as
® Yiugp(v) ="Tgp(v)
® Yugp(v) =Y Fgp(v)
° yﬂgp() =

Therefore, Y pgp(v) = YTgp(v) + Y Fgp(v).

Y _Y
Finally, for BP, it is ¥3gp(v) = yfpgzg +y§BPEZ;
BP BP

Conclusions
[e]e]

20 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions

0000000000000 0000e0 0000000000 000000 (e]o]

Product-based MP heuristics (1)

Well known product-based MP heuristics.

Lot

SP
EMBPG
EMSPG

@ All the basic MP heuristics have different strengths and weaknesses.
@ Introducing MP into a solver to guide its search is problematic.
@ The necessity to choose basically means: However you choose, you

choose wrong!

21 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
0000000000000 00000e 0000000000 000000 [e]e]

Product-based MP heuristics (2)

Increase the flexibility of MP heuristics in order to overcome the
"robustness problem”.

How to create a more flexible MP heuristic?

Goals Message Passing Interpolation and ISI poPMP* Conclusions
0000000000000 00000e 0000000000 000000 [e]e]

Product-based MP heuristics (2)

Increase the flexibility of MP heuristics in order to overcome the
"robustness problem”.

How to create a more flexible MP heuristic?

@ Interpolation!

Goals Message Passing Interpolation and IS poPMP* Conclusions
o] 0000000000000 000000 @®000000000 000000 [e]e]

Interpolation (1)

What is it, that needs to be achieved in order to create an interpolation?
Given two product-based MP heuristics H; and Hy, we want an
interpolation pH?*, s.t.

@ interpolation parameter p € (0.0, 1.0]

e Setting p = 0 will make pH* mimic Hy, i.e. By (v) = BZH(’U,O)

o Setting p = 1 will make pH’ mimic Hy, i.e. By, (v) = By(v,1)

@ Setting p € (0.0,1.0) results in a gradual adaption between Hy, Ho

e gradually adapt the convergence behavior
e gradually adapt the carefulness to present biases

23 /40

Goals Message Passing Interpolation and IS poPMP* Conclusions
o] 0000000000000 000000 000000000 000000 [e]e]

Interpolation (2)

Equations used in all product-based MP heuristics.

During lterations
@ Disrespect message ¥9,,(l, c)
e Warning message Yw, (I, c)

e Literal cavity freedom values ¥.5,,(l, ¢), Uy (I, c)

After convergence, provided Ywy, (1, ¢)
@ Variable freedom Y7, (v),YFy(v)
@ Variable magnetization y;er(v),yug(v),y,uﬁ(v),y,uH(v)
e Variable bias Y3} (v), Y5 (v), Y By (v)

24 /40

Goals Message Passing Interpolation and IS poPMP* Conclusions
[e] 0O000000000000000000 00@0000000 000000 (e]o]

Interpolation (3)

Equations that must be defined by H itself.

During lterations
@ Disrespect message ¥0,,(/,¢)
e Warning message Yw,(l,c)

o Literal cavity freedom values 45, (1, ¢), Uy (I, c)

After convergence, provided Ywy, (1, ¢)
@ Variable freedom Y7, (v),YFy(v)
@ Variable magnetization Y1, (v), Y11 (v), Y i (v), Yy (v)
e Variable bias Y3} (v), Y8y (v),YBy(v)

Must be defined for the interpolation.

25 /40

Goals Message Passing Interpolation and IS
0000000000000 000000 000@000000

ISI is a technique to derive pH? given Hy and Ha.
It uses an interpolation parameter p € [0.0, 1.0].
It derives
. L
Y6t (Le,), Yk (v, p), it (v, p), Yl (v,)
given

How exatly does it work? Exemplary explanation.
Assume we want to

@ interpolate BP and SP
@ using interpolation parameter p € [0.0, 1.0]
@ in order to derive the interpolation pSP*

poPMP*
000000

Conclusions

(e]o]

26

40

Goals Message Passing Interpolation and IS poPMP* Conclusions
[e] 0O000000000000000000 O000@00000 000000 (e]o]

Step 1. derives 46cp(l, ¢, p) using

® Yogp(l,c) = UL—&-S

U(1—S
o Yisp(lic) = W

Linearly interpolate!

Numerator:

1 =p{Ut+p{UAQA=5)} =...=U(1 - pS)
Denominator:
1=—p{U+St+p{UQ-8)+S}=...=U1—-pS)+S
Combine:

; U(1-pS)
Y5icn(l,c,p) = — P2
z pSP(707/)) U(l —pS) + S

27 /40

Goals Message Passing Interpolation and IS poPMP*
o] 0O000000000000000000 0000080000 000000

Step 2. derives y,uﬁ;gp(v,p) using
° Vpgp(v) = Tgp(v) (=T)
° Vudp(v) =¥Tgp(v)(1 = VFsp(v)) (=T (1-F))

Linearly interpolate!

L=pHTH+p{TA=F)} = ... = T(1 = pF) = Yuydp(v,)

Step 3. derives y,u;gp(v,p) in a similar way.
Step 4. derives y,u;jstp(v,p) in a similar way.

In the end, all four defining functions for pSP? have been derived.

Conclusions

(e]o]

28 /40

Goals Message Passing Interpolation and IS poPMP*
0O000000000000000000 O00000e000 000000

The product-based MP Hierarchy (1)

The basic product-based MP heuristics.
Level 0
EMBPG EMSPG BP
SP

EMBPG
EMSPG

Conclusions
[e]e]

29 /40

poPMP* Conclusions

Goals Message Passing Interpolation and IS
000000 [e]e]

0O000000000000000000 0000000800

The product-based MP Hierarchy (2)

The first level of interpolations (applying ISI once).

L0 et

SP
EMBPG
EMSPG

BP | psP' | sp |

30 /40

poPMP* Conclusions

Goals Message Passing Interpolation and IS
[e]e]

0O000000000000000000 0000000080 000000

The product-based MP Hierarchy (3)

The first level of interpolations (applying ISI once).
Level 0 Level 1

| EMBPG |4 pEMSPG [-» EMSPG | EMBPG!
SP cEMSPG!

6EMBPG' 6EMSPG' EMBPG pSP!
EMSPG pEMSPG!

—Q

31/40

Goals Message Passing Interpolation and IS poPMP*
0000000000000 000000 000000000 e 000000

The product-based MP Hierarchy (4)

The first level of interpolations (applying ISI once).

(f\ EMBPG H pEMSPG! H EMSPG ‘ Ef,velo I;Eﬁglmi
SP 6EMSPG!
i i i] EMBPG pSPi
|cEMfPG [poPMP' || "ENiSPG | EMSPG SEMSPG‘
| BP | pSP | sp |
0 o

Conclusions
[e]e]

Level 2.
poPMP!

32/40

Goals Message Passing

Interpolation and ISI paPMP?
[e]

0O000000000000000000 0000000000

poePMPI (1)

Conclusions
@00000 (e]e]

Why is poPMP? so special?
@ It is the most general product-based MP heuristic.
@ It can mimic the behavior of all others.

@ It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (p, o) € [0.0,1.0]? characterizes a
specific MP behavior.
1

33 /40

Goals Message Passing

Interpolation and ISI poPMP?
[e]

0000000000000 000000 0000000000 0@0000 (e]o]
poePMP? (2)
Why is poPMP? so special?

@ It is the most general product-based MP heuristic.

@ It can mimic the behavior of all others.

@ It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (p, o) € [0.0,1.0]? characterizes a
specific MP behavior.

1 Best behavior given?
Can use: ,)
o SP, pSP!, cGEMSPG! , pcPMP'
SP(1,0)
0 p 1

Conclusions

34 /40

Goals Message Passing Interpolation and ISI po'PMPi
o] 0000000000000 000000 0000000000 008000

poePMPi (3)

Why is poPMP? so special?
@ It is the most general product-based MP heuristic.

@ It can mimic the behavior of all others.

Conclusions
[e]e]

@ It can provide MP behavior that cannot be achieved by any other

heuristic.

Each point in the parameter plane (p, o) € [0.0,1.0]? characterizes a

specific MP behavior.
1

Best behavior given?

Can use; . A
1 i i
° (1,0.5) ¢ EP’ pSP’, GEMSPG, poPMP
anuse: '
oEMSPG', poPMP!
SP(1,0)
0 0 !

35 /40

Goals Message Passing Interpolation and ISI po'PMPi
o] 0000000000000 000000 0000000000 000@00

poPMP' (4)

Why is poPMP? so special?
@ It is the most general product-based MP heuristic.
@ It can mimic the behavior of all others.

Conclusions

(e]o]

@ It can provide MP behavior that cannot be achieved by any other

heuristic.

Each point in the parameter plane (p, o) € [0.0,1.0]? characterizes a

specific MP behavior.
1

Best behavior given?
Can use:

Q

(0.5,0.5) 0 (1.0:5¢ Can use:

6EMSPG' , psPMP!

SP(1,0)| Can use:
1
0 5 ! poPMP

SP, pSP, GEMSPG! , poPMP!

36

40

Goals Message Passing Interpolation and ISI po‘PMPi Conclusions

[e] 0O000000000000000000 0000000000 [e]e]ele] le} (e]o]

poPMP! (5)

Why is that good in order to introduce MP into a solver?

@ This circumvents the need to choose from all the available MP
heuristics.

@ The interpolation parameters p, o can be tuned automatically for
each class of formulas.

In the context of a CDCL search:
Q@ Use pO’PMPi to compute biases.
@ Use a specifically tuned MP behavior for the formula class.

© Use the biases to initialize VSIDS and phase-saving.

37/40

Goals

[e]

Message Passing
0000000000000 000000

Interpolation and ISI
0000000000

paPMP?
O0000e

Empirical results from parameter tuning

Conclusions
[e]e]

Benchmark | S/U Solver Performance

DimetheusJW DimetheusMP

% PAR10 | % PAR10 | p o
battleship S 474 10627.2 | 89.5 | 2130.1 | 0.5002 | 0.0025
battleship u 55.6 8919.7 | 55.6 8890.4 | 0.4463 | 1.0000
em-all S 75.0 5263.7 | 100.0 | 75.4 0.8606 | 0.1295
em-compact S 0.0 20000.0 | 37.5 12728.5| 0.9229 | 0.7946
em-explicit S 75.0 5473.3 100.0 | 157.1 0.2932 | 0.2698
em-fbcolors S 12.5 17723.3 | 37.5 | 12662.9| 0.0000 | 0.1731
grid-pebbling | S 100.0 | 16.5 100.0 | 8.0 0.9931 | 0.3890
grid-pebbling | U | 88.9 2226.9 100.0 | 4.7 0.5884 | 0.0035
sgenl S 16.7 16677.7 | 27.8 | 14460.9| 0.0937 | 0.6563
k3-r4.200 S 0.0 20000.0 | 100.0 | 22.7 0.9929 | 0.0004
k3-r4.237 S 0.0 20000.0 | 75.0 | 5026.8 | 0.9961 | 0.0000
k4-r9.000 S 0.0 20000.0 | 100.0 | 10.0 0.8592 | 0.0000
k4-r9.526 S 0.0 20000.0 | 100.0 | 5.2 0.9530 | 0.0000

38 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 0000000000000 000000 0000000000 000000 [Jo)

Conclusions

@ Provided better access to MP for the SAT community.
e We provided a unified and consistent notational frame to explain all
currently available MP heuristics.
e We explained the functioning of all these heuristics.
e We explained their respective strengths and weaknesses.
o We explained where they differ.

© Extend our knowledge about MP.

e We provided a hierarchy of generality regarding product-based MP
heuristics.

o We clarified what an interpolation is and how they are derived.

o Integrated MP into a CDCL solver (used to initialize VSIDS and
phase-saving) to get more empirical insight.

39 /40

Goals Message Passing Interpolation and ISI poPMP* Conclusions
o] 0000000000000 000000 0000000000 000000 oe

Thanks you for your attention!

You can send disrespect messages and questions to
oliver@gableske.net

Thank you for your attention.

40 /40

Bibliography

Check the paper

O. Gableske

On the Interpolation between Product-Based
Message Passing Heuristics for SAT

published in

Theory and Application of Satisfiability Testing — SAT 2013
LNCS 7962, pp. 293-308. Springer, Heidelberg, 2013

N

The difference between BP and SP

With p, S,U, T, F € [0.0,1.0]

Disrespect messages:

o Y0gp(l,c) = UZS Yosp(l,c) = (m
° Loysp(lsc:p) = (m
Bias computations:
e Yfgp(v) = ;-._7_:77:: YBsp(v) = 7—_‘_7;:__]:7-]:
o VBicp(v,p) = =T

T+ F—pTF

	Goals
	Message Passing
	Message Passing on a conceptual level
	Product-based MP heuristics

	Interpolation and ISI
	Interpolation
	Indirect Structural Interpolation (ISI)
	The product-based MP Hierarchy

	PMPi
	Conclusions
	Appendix

