
Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

On the Interpolation of Product-Based Message Passing
Heuristics for SAT

Oliver Gableske1

1Institute of Theoretical Computer Science
Ulm University

Germany

oliver@gableske.net
https://www.gableske.net

SAT 2013, 11.07.2013

1 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Outline

1 Goals

2 Message Passing
Message Passing on a conceptual level
Product-based MP heuristics

3 Interpolation and ISI
Interpolation
Indirect Structural Interpolation (ISI)
The product-based MP Hierarchy

4 ρσPMPi

5 Conclusions

2 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Goals

1 Provide better access to MP for the SAT community.

Provide a consistent notational frame to explain all currently available
MP heuristics.
Explain the functioning of all these heuristics.
Explain their respective strengths and weaknesses.
Explain where they differ.

2 Extend our knowledge about MP.

Provide more general/flexible MP heuristics.
Integrate MP into a CDCL solver (used to initialize VSIDS and
phase-saving).

3 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (1)

Message Passing (MP) is a class of algorithms

H ∈ MP can be understood as variable and value ordering heuristics
in the context of SAT

The main goal of H is to provide biases for all variables of a CNF F

∀v ∈ V : βH(v) ∈ [−1.0, 1.0]

The biases can be used to guide search (CDCL or SLS)

Given the formula F , what does H do to compute the biases?

4 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (1)

Message Passing (MP) is a class of algorithms

H ∈ MP can be understood as variable and value ordering heuristics
in the context of SAT

The main goal of H is to provide biases for all variables of a CNF F

∀v ∈ V : βH(v) ∈ [−1.0, 1.0]

The biases can be used to guide search (CDCL or SLS)

Given the formula F , what does H do to compute the biases?

4 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (2)

Example

F = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v̄2 ∨ v3) ∧ (v̄1 ∨ v̄2 ∨ v̄3)

It is helpful to understand F as a factor graph.

v1

v2

v3

c1

c2

c3

Undirected, bipartite graph

Two types of nodes (variable nodes (circles), clause nodes (squares))

Two types of edges (positive edges (solid), negative edges (dashed))

Edges constitute literal occurrences

5 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (3)

Example

F = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v̄2 ∨ v3) ∧ (v̄1 ∨ v̄2 ∨ v̄3)

v1

v2

v3

c1

c2

c3

H sends around messages along the edges.

Assume variable v is contained in clause c as literal l

Two types of messages.

6 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (4)

Example

F = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v̄2 ∨ v3) ∧ (v̄1 ∨ v̄2 ∨ v̄3)

v1 c1

c2

c3

d

d

d

1

2

3

1. Disrespect Messages (from variable nodes towards clause nodes):

δH(l, c) ∈ [0.0, 1.0]

The chance that l will not satisfy c

Intuitive meaning of δH(l, c) ≈ 1.0:
Variable v tells clause c that it cannot satisfy it.

7 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (5)

Example

F = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v̄2 ∨ v3) ∧ (v̄1 ∨ v̄2 ∨ v̄3)

v1 c1

c2

c3

w

w

w

1

2

3

2. Warning Messages (from clause nodes towards variable nodes):

ωH(c, v) ∈ [0.0, 1.0]

The chance that no other literal in c can satisfy c

Intuitive meaning of ωH(c, v) ≈ 1.0:
Clause c is telling variable v, that it needs it to be satisfied.

8 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (6)

Example

F = (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v̄2 ∨ v3) ∧ (v̄1 ∨ v̄2 ∨ v̄3)

For all product-based MP heuristics, the waring message is computed by

ωH(c, v) =
∏

l∈c\{v,v̄}

δH(l, c)

v1

v2

v3

c1d1
d3w d12

.=

d3

9 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (7)

For all product-based MP heuristics, the cavity freedom values are
computed by

[0.0, 1.0] 3 SH(l, c) =


∏
d∈C−

v

[1− ωH(d, v)], l = v∏
d∈C+

v

[1− ωH(d, v)], l = v̄

Intuitive meaning:
How happy are the other clauses if l satisfies c?

[0.0, 1.0] 3 UH(l, c) =


∏

d∈C+
v \{c}

[1− ωH(d, v)], l = v∏
d∈C−

v \{c}

[1− ωH(d, v)], l = v̄

Intuitive meaning:
How happy are the other clauses if l does not satisfy c?

10 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (8)

In summary:

Computed δH values allow us to compute the ωH values

Computed ωH values allow us to compute the SH, UH values

However:

H will not send around messages arbitrarily

H performs clause updates ∀c ∈ F
The ordering of the clauses in which they receive updates is
determined by a random clause permutation π ∈ Sm

11 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (9)

Following π ∈ Sm, each clause is updated exactly once.

Basically, a clause update for clause c consists of three steps.

1 Compute ∀l ∈ c : δH(l, c)

2 Using the δ, compute ∀v ∈ c : ωH(c, v)

3 Using the ω, compute ∀l ∈ c : SH(l, c), UH(l, c)

Where do the δ values come from in order to compute a clause update?

12 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (10)

We need the terms of iteration and cycle to explain that.

Doing the clause updates for all clauses exactly once is called an
iteration.

A cycle is a finite tuple of iterations.

Iterations and cycles capture the notion of passing time while H
performs its computations.

An iteration is a single point in time, a cycle is a time-frame.

We denote the specific values computed in iteration z of cycle y with
y
zδH(l, c)
y
zωH(c, v)
y
zSH(l, c)
y
zUH(l, c)

13 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (11)

Again, in order to compute the clause update for iteration z in cycle y

1 Compute ∀l ∈ c : yzδH(l, c)

2 Using the y
zδH(l, c), compute ∀v ∈ c : yzωH(c, v)

3 Using the y
zωH(c, v), compute ∀l ∈ c : yzSH(l, c), yzUH(l, c)

Again, where do the y
zδH(l, c) values come from in order to compute a

clause update?

14 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (12)

The initialization for cycle y happens in iteration z = 0.

∀c ∈ F : ∀l ∈ c : initialize randomly with y
0δH(l, c) ∈R (0.0, 1.0)

The values for y0ωH(c, v), y0SH(l, c), y0UH(l, c) then directly follow with
the definitions.

The clause updates for cycle y and iteration z > 0 are defined recursive.

Rely on y
z−1SH(l, c), y

z−1UH(l, c) in order to compute y
zδH(l, c).

How exactly is y
zδH(l, c) computed using these values?

This must be defined by H!

15 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (12)

The initialization for cycle y happens in iteration z = 0.

∀c ∈ F : ∀l ∈ c : initialize randomly with y
0δH(l, c) ∈R (0.0, 1.0)

The values for y0ωH(c, v), y0SH(l, c), y0UH(l, c) then directly follow with
the definitions.

The clause updates for cycle y and iteration z > 0 are defined recursive.

Rely on y
z−1SH(l, c), y

z−1UH(l, c) in order to compute y
zδH(l, c).

How exactly is y
zδH(l, c) computed using these values?

This must be defined by H!

15 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (13)

For Belief Propagation (BP) this is defined as

y
zδBP(l, c) =

y
z−1UBP(l, c)

y
z−1UBP(l, c) + y

z−1SBP(l, c)

(
=

U

U + S

)

16 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (14)

We now know

. . . how cycles start.

. . . how the iterations are done.
y
0

init all   d  cls. updt. c     p(i)i  {1,...,m}:
Ay

0
  w

y
0

y
0

y
0S U for c     p(i)

give give

y
1
d  cls. updt. c     p(i)i  {1,...,m}:

Ay
1

  w
y
1

y
1

y
1S U for c     p(i)

give give
give

y
*
d  cls. updt. c     p(i)i  {1,...,m}:

Ay
*

  w
y
*

y
*

y
*S U for c     p(i)

give give
give

...

We do not know

. . . how a cycle terminates.

What we need is an abort condition.

17 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (14)

We now know

. . . how cycles start.

. . . how the iterations are done.
y
0

init all   d  cls. updt. c     p(i)i  {1,...,m}:
Ay

0
  w

y
0

y
0

y
0S U for c     p(i)

give give

y
1
d  cls. updt. c     p(i)i  {1,...,m}:

Ay
1

  w
y
1

y
1

y
1S U for c     p(i)

give give
give

y
*
d  cls. updt. c     p(i)i  {1,...,m}:

Ay
*

  w
y
*

y
*

y
*S U for c     p(i)

give give
give

...

We do not know

. . . how a cycle terminates.

What we need is an abort condition.

17 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (15)

The abort conditions for a product-based MP heuristics is defined as

∀c ∈ F : ∀v ∈ c : | yzωH(c, v)− y
z−1ωH(c, v)| < ωmax

In practice ωmax = 0.01

The iteration of cycle y in which the abort condition holds is denoted ∗.
The messages

y
∗δH(l, c)
y
∗ωH(c, v)

are called equilibrium messages.

The y
∗ωH(c, v) are used to compute the biases for cycle y.

18 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (16)

Computing biases is done in three steps using the y
∗ωH(c, v).

1 Compute the variable freedom to be assigned to true (T ) or false (F )

yTH(v) =
∏
c∈C−

v

[1− y
∗ωH(c, v)] yFH(v) =

∏
c∈C+

v

[1− y
∗ωH(c, v)]

2 Compute magnetization values using T and F

yµ+
H(v), yµ−H(v), yµ±H(v) ∈ [0.0, 1.0]

These give yµH(v) = yµ+
H(v) + yµ−H(v) + yµ±H(v)

3 Compute the biases

yβ+
H (v) =

yµ+
H(v)

yµH(v)
yβ−H (v) =

yµ−H(v)
yµH(v)

yβH(v) = yβ+
H (v)− yβ−H (v)

19 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Message Passing on a conceptual level (17)

Where do the yµ+
H(v), yµ−H(v), yµ±H(v) ∈ [0.0, 1.0] come from?

Again, this must be defined by H!

For Belief Propagation (BP), this is defined as
yµ+

BP(v) = yTBP(v)
yµ−BP(v) = yFBP(v)
yµ±BP(v) = 0

Therefore, yµBP(v) = yTBP(v) + yFBP(v).

Finally, for BP, it is yβBP(v) =
yTBP(v)− yFBP(v)
yTBP(v) + yFBP(v)

20 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Product-based MP heuristics (1)

Well known product-based MP heuristics.

BP

EMBPG

SP

EMSPG
BP
SP
EMBPG
EMSPG

Level 0

All the basic MP heuristics have different strengths and weaknesses.

Introducing MP into a solver to guide its search is problematic.

The necessity to choose basically means: However you choose, you
choose wrong!

21 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Product-based MP heuristics (2)

Increase the flexibility of MP heuristics in order to overcome the
”robustness problem”.

How to create a more flexible MP heuristic?

Interpolation!

22 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Product-based MP heuristics (2)

Increase the flexibility of MP heuristics in order to overcome the
”robustness problem”.

How to create a more flexible MP heuristic?

Interpolation!

22 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Interpolation (1)

What is it, that needs to be achieved in order to create an interpolation?
Given two product-based MP heuristics H1 and H2, we want an
interpolation ρHi, s.t.

interpolation parameter ρ ∈ [0.0, 1.0]

Setting ρ = 0 will make ρHi mimic H1, i.e. βH1
(v) = βiρH(v, 0)

Setting ρ = 1 will make ρHi mimic H2, i.e. βH2
(v) = βiρH(v, 1)

Setting ρ ∈ (0.0, 1.0) results in a gradual adaption between H1, H2

gradually adapt the convergence behavior
gradually adapt the carefulness to present biases

23 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Interpolation (2)

Equations used in all product-based MP heuristics.

During Iterations

Disrespect message y
zδH(l, c)

Warning message y
zωH(l, c)

Literal cavity freedom values y
zSH(l, c), yzUH(l, c)

After convergence, provided y
∗ωH(l, c)

Variable freedom yTH(v), yFH(v)

Variable magnetization yµ+
H(v), yµ−H(v), yµ±H(v), yµH(v)

Variable bias yβ+
H (v), yβ−H (v), yβH(v)

24 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Interpolation (3)

Equations that must be defined by H itself.

During Iterations

Disrespect message y
zδH(l, c)

Warning message y
zωH(l, c)

Literal cavity freedom values y
zSH(l, c), yzUH(l, c)

After convergence, provided y
∗ωH(l, c)

Variable freedom yTH(v), yFH(v)

Variable magnetization yµ+
H(v), yµ−H(v), yµ±H(v), yµH(v)

Variable bias yβ+
H (v), yβ−H (v), yβH(v)

Must be defined for the interpolation.

25 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ISI (1)

ISI is a technique to derive ρHi given H1 and H2.
It uses an interpolation parameter ρ ∈ [0.0, 1.0].
It derives

y
zδ
i
ρH(l, c, ρ), yµi+ρH(v, ρ), yµi−ρH(v, ρ), yµi±ρH(v, ρ)

given
y
zδH1

(l, c), yµ+
H1

(v), yµ−H1
(v), yµ±H1

(v)
y
zδH2

(l, c), yµ+
H2

(v), yµ−H2
(v), yµ±H2

(v)

How exatly does it work? Exemplary explanation.
Assume we want to

interpolate BP and SP

using interpolation parameter ρ ∈ [0.0, 1.0]

in order to derive the interpolation ρSPi

26 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ISI (2)

Step 1. derives y
zδ
i
ρSP(l, c, ρ) using

y
zδBP(l, c) = U

U+S

y
zδSP(l, c) = U(1−S)

U(1−S)+S

Linearly interpolate!
Numerator:
(1− ρ){U}+ ρ{U(1− S)} = . . . = U(1− ρS)
Denominator:
(1− ρ){U + S}+ ρ{U(1− S) + S} = . . . = U(1− ρS) + S
Combine:
y
zδ
i
ρSP(l, c, ρ) =

U(1− ρS)

U(1− ρS) + S

27 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ISI (3)

Step 2. derives yµi+ρSP(v, ρ) using

yµ+
BP(v) = yTBP(v) (= T )

yµ+
SP(v) = yTSP(v)(1− yFSP(v)) (= T (1−F ))

Linearly interpolate!
(1− ρ){T }+ ρ{T (1−F )} = . . . = T (1− ρF ) = yµi+ρSP(v, ρ)

Step 3. derives yµi−ρSP(v, ρ) in a similar way.

Step 4. derives yµi±ρSP(v, ρ) in a similar way.

In the end, all four defining functions for ρSPi have been derived.

28 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

The product-based MP Hierarchy (1)

The basic product-based MP heuristics.

BP

EMBPG

SP

EMSPG
BP
SP
EMBPG
EMSPG

Level 0

29 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

The product-based MP Hierarchy (2)

The first level of interpolations (applying ISI once).

BP

EMBPG

SP

EMSPG

rSP

BP
SP
EMBPG
EMSPG

rSP
Level 0 Level 1

i

i

r

30 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

The product-based MP Hierarchy (3)

The first level of interpolations (applying ISI once).

BP

EMBPG

SP

EMSPG

rSP

rEMSPG

sEMBPG sEMSPG

0 1

1

r

s

BP
SP
EMBPG
EMSPG

sEMBPG
sEMSPG
rSP
rEMSPG

Level 0 Level 1i

i i

i

i

i

i

i

31 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

The product-based MP Hierarchy (4)

The first level of interpolations (applying ISI once).

BP

EMBPG

SP

EMSPG

rSP

rEMSPG

sEMBPG sEMSPGrsPMP

0 1

1

r

s

BP
SP
EMBPG
EMSPG

sEMBPG
sEMSPG
rSP
rEMSPG

rsPMP
Level 0 Level 2Level 1i

ii i

i

ii

i

i

i

32 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ρσPMPi (1)

Why is ρσPMPi so special?

It is the most general product-based MP heuristic.

It can mimic the behavior of all others.

It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (ρ, σ) ∈ [0.0, 1.0]2 characterizes a
specific MP behavior.

0 1

1

r

s

33 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ρσPMPi (2)

Why is ρσPMPi so special?

It is the most general product-based MP heuristic.

It can mimic the behavior of all others.

It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (ρ, σ) ∈ [0.0, 1.0]2 characterizes a
specific MP behavior.

0 1

1

r

s

SP(1,0)

Can use: 
SP, rSP  , sEMSPG  , rsPMP i i i

Best behavior given?

34 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ρσPMPi (3)

Why is ρσPMPi so special?

It is the most general product-based MP heuristic.

It can mimic the behavior of all others.

It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (ρ, σ) ∈ [0.0, 1.0]2 characterizes a
specific MP behavior.

0 1

1

r

s

SP(1,0)

Can use: 
SP, rSP  , sEMSPG  , rsPMP i i i

(1,0.5)

Best behavior given?

Can use: 
sEMSPG  , rsPMP i i

35 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ρσPMPi (4)

Why is ρσPMPi so special?

It is the most general product-based MP heuristic.

It can mimic the behavior of all others.

It can provide MP behavior that cannot be achieved by any other
heuristic.

Each point in the parameter plane (ρ, σ) ∈ [0.0, 1.0]2 characterizes a
specific MP behavior.

0 1

1

r

s

SP(1,0)

Can use: 
SP, rSP  , sEMSPG  , rsPMP i i i

(1,0.5)

Best behavior given?

Can use: 
sEMSPG  , rsPMP 
Can use:
rsPMP 

i i

i

(0.5,0.5)

36 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

ρσPMPi (5)

Why is that good in order to introduce MP into a solver?

This circumvents the need to choose from all the available MP
heuristics.

The interpolation parameters ρ, σ can be tuned automatically for
each class of formulas.

In the context of a CDCL search:

1 Use ρσPMPi to compute biases.

2 Use a specifically tuned MP behavior for the formula class.

3 Use the biases to initialize VSIDS and phase-saving.

37 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Empirical results from parameter tuning

Benchmark S/U Solver Performance
DimetheusJW DimetheusMP

% PAR10 % PAR10 ρ σ
battleship S 47.4 10627.2 89.5 2130.1 0.5002 0.0025
battleship U 55.6 8919.7 55.6 8890.4 0.4463 1.0000
em-all S 75.0 5263.7 100.0 75.4 0.8606 0.1295
em-compact S 0.0 20000.0 37.5 12728.5 0.9229 0.7946
em-explicit S 75.0 5473.3 100.0 157.1 0.2932 0.2698
em-fbcolors S 12.5 17723.3 37.5 12662.9 0.0000 0.1731
grid-pebbling S 100.0 16.5 100.0 8.0 0.9931 0.3890
grid-pebbling U 88.9 2226.9 100.0 4.7 0.5884 0.0035
sgen1 S 16.7 16677.7 27.8 14460.9 0.0937 0.6563
k3-r4.200 S 0.0 20000.0 100.0 22.7 0.9929 0.0004
k3-r4.237 S 0.0 20000.0 75.0 5026.8 0.9961 0.0000
k4-r9.000 S 0.0 20000.0 100.0 10.0 0.8592 0.0000
k4-r9.526 S 0.0 20000.0 100.0 5.2 0.9530 0.0000

38 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Conclusions

1 Provided better access to MP for the SAT community.

We provided a unified and consistent notational frame to explain all
currently available MP heuristics.
We explained the functioning of all these heuristics.
We explained their respective strengths and weaknesses.
We explained where they differ.

2 Extend our knowledge about MP.

We provided a hierarchy of generality regarding product-based MP
heuristics.
We clarified what an interpolation is and how they are derived.
Integrated MP into a CDCL solver (used to initialize VSIDS and
phase-saving) to get more empirical insight.

39 / 40



Goals Message Passing Interpolation and ISI ρσPMPi Conclusions

Thanks you for your attention!

You can send disrespect messages and questions to
oliver@gableske.net

Thank you for your attention.

40 / 40



Bibliography

Check the paper

O. Gableske

On the Interpolation between Product-Based
Message Passing Heuristics for SAT

published in

Theory and Application of Satisfiability Testing – SAT 2013
LNCS 7962, pp. 293–308. Springer, Heidelberg, 2013

1 / 2



The difference between BP and SP

With ρ, S, U, T ,F ∈ [0.0, 1.0]

Disrespect messages:

y
zδBP(l, c) =

U

U + S
y
zδSP(l, c) =

U(1− S)

U(1− S) + S

y
zδ
i
ρSP(l, c, ρ) =

U(1− ρS)

U(1− ρS) + S

Bias computations:

yβBP(v) =
T − F
T + F

yβSP(v) =
T − F

T + F − T F
yβiρSP(v, ρ) =

T − F
T + F − ρT F

2 / 2


	Goals
	Message Passing
	Message Passing on a conceptual level
	Product-based MP heuristics

	Interpolation and ISI
	Interpolation
	Indirect Structural Interpolation (ISI)
	The product-based MP Hierarchy

	PMPi
	Conclusions
	Appendix

