

Exploiting Partial Duality in QBF

Alexandra Goultiaeva and Fahiem Bacchus
University of Toronto, Canada

SAT 2013

Outline

● Background
– Dual propagation

– Dual propagation in existing CNF solvers

● Partial duality
– Using reconstructed gates

– Reconstructing Plaisted-Greenbaum

● Experiments and conclusion

CNF representation

● Handles conflicts well, but loses information
about solutions

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

((x1≠x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1≠x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

Tseitin

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1≠x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

Tseitin

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

Possible solution:

(x1∧¬x2)

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1≠x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

Tseitin

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

Possible solution:

Not verifiable in Tseitin

(x1∧¬x2)

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Any solution would have to include a variable from
every clause, including those that encode equalities.
● In particular, it would have to include all the

→ An exponential number of solutions has to be explored
x i

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Any solution would have to include a variable from
every clause, including those that encode equalities.
● In particular, it would have to include all the

→ An exponential number of solutions has to be explored
x i

In this simple example, a number of other techniques
could work:
● Don't care propagation

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Any solution would have to include a variable from
every clause, including those that encode equalities.
● In particular, it would have to include all the

→ An exponential number of solutions has to be explored
x i

In this simple example, a number of other techniques
could work:
● Don't care propagation
● Plaisted-Greenbaum encoding

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Any solution would have to include a variable from
every clause, including those that encode equalities.
● In particular, it would have to include all the

→ An exponential number of solutions has to be explored
x i

In this simple example, a number of other techniques
could work:
● Don't care propagation
● Plaisted-Greenbaum encoding

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Any solution would have to include a variable from
every clause, including those that encode equalities.
● In particular, it would have to include all the

→ An exponential number of solutions has to be explored
x i

In this simple example, a number of other techniques
could work:
● Don't care propagation
● Plaisted-Greenbaum encoding May get a solution

(x1∧¬x2)

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Any solution would have to include a variable from
every clause, including those that encode equalities.
● In particular, it would have to include all the

→ An exponential number of solutions has to be explored
x i

In this simple example, a number of other techniques
could work:
● Don't care propagation
● Plaisted-Greenbaum encoding

BUT NOT IN GENERAL

Example:

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)∨ f (x1, x2, x3, x4,e)

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Main problem: cubes are not expressive enough
to represent more than one solution to

BUT NOT IN GENERAL

Example:

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)∨ f (x1, x2, x3, x4,e)

(x1⊕x2⊕x3⊕x4⊕...⊕xn)

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Main problem: cubes are not expressive enough
to represent more than one solution to

● Such is not a problem for conflicts, because we have
Tseitin variables

BUT NOT IN GENERAL

Example:

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)∨ f (x1, x2, x3, x4,e)

(x1⊕x2⊕x3⊕x4⊕...⊕xn)

∃g1 g2 g 3 ... g k

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Main problem: cubes are not expressive enough
to represent more than one solution to

● Such is not a problem for conflicts, because we have
Tseitin variables
● But they are not useful in cubes

BUT NOT IN GENERAL

Example:

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)∨ f (x1, x2, x3, x4,e)

(x1⊕x2⊕x3⊕x4⊕...⊕xn)

∃g1 g2 g 3 ... g k

CNF representation

● Handles conflicts well, but loses information
about solutions

● Example:
∃e∀ x1 x2 x3 ... xn

∃e∀ x1 x2 x3 ... xn ∃g1 g2 g 3 ...

((x1∨x2)∨(x2≠x3)∨(x3≠x4)∨...)
∨ f (x1, x2, x3, x4,e)

(g1∨g 2∨g3∨...) g1≡(x1≠x2)

g2≡(x2≠x3) g k≡ f (x1, ... , e)
...

● Main problem: cubes are not expressive enough
to represent more than one solution to

● Such is not a problem for conflicts, because we have
Tseitin variables
● But they are not useful in cubes
● So: we lose the ability to generalize solutions

BUT NOT IN GENERAL

Example:

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)∨ f (x1, x2, x3, x4,e)

(x1⊕x2⊕x3⊕x4⊕...⊕xn)

∃g1 g2 g 3 ... g k

QBF Solving

QBF
Solver

Original Problem

CNF

QBF Solving

QBF
Solver

Original Problem

CNF

●A biased view of the
 problem

QBF Solving

QBF
Solver

Original Problem

Complete
structure

One solution: non-CNF

QBF Solving

QBF
Solver

Original Problem

Complete
structure

One solution: non-CNF
- Implicitly creates a universal copy
for each Tseitin variable

QBF Solving

QBF
Solver

Original Problem

Complete
structure

One solution: non-CNF
- Loses implementation efficiency
- Needs specialized techniques
- Limited benefits from other work

QBF Solving

QBF
Solver

Original Problem

Complete
structure

One solution: non-CNF
- Loses implementation efficiency
- Needs specialized techniques
- Limited benefits from other work

Specialized solvers are
unnecessary.

Existing search-based solvers have all the needed
mechanisms

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

● Clause database is
 initialized from the
 input CNF

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

● Clause database is
 initialized from the
 input CNF

● Cube database starts
 out empty

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

● Clause database is
 initialized from the
 input CNF

● Cube database starts
 out empty

Empty cube database:
● No early solution detection
● Is only useful far into the

search
● Often needlessly large

cubes

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

DNF

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

DNF

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

DNF

Getting solution structure

Original Problem Negated Problem

NEGATE

Getting solution structure

Original Problem Negated Problem

NEGATE

Tseitin

CNF

Getting solution structure

Original Problem Negated Problem

NEGATE

Tseitin

CNF

NEGATE

DNF

Getting solution structure

Original Problem Negated Problem

NEGATE

Tseitin

CNF

NEGATE

DNF

NOTE: The DNF
contains universal
Tseitin variables

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

DNF

QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

DNF

Seeded cube database:
● Detects solutions early
● Is immediately useful
● Smaller starting cubes

Reconstructing structure

● Problem: original non-CNF is not always
available

● Reconstruction methods exist, but they are
necessarily unreliable and incomplete

● Want to take advantage of partially
reconstructed information

Reconstructing structure

∧

∨ ∨ ∨ ∨ ∨ ∨

(a∨b∨c)
∧(e∨ f)
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

● CNF can be viewed as a flat tree

∧

∨ ∨ ∨ ∨ ∨ ∨

∧

∨ ∨ ∨ ∨ ∨ ∨

Reconstructing structure
(a∨b∨c)

∧(e∨ f)
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

● CNF can be viewed as a flat tree
● Negating it and converting to
DNF would create a new variable
for every clause

∧

∨ ∨ ∨ ∨ ∨ ∨

∧

∨ ∨ ∨ ∨ ∨ ∨

Reconstructing structure
(a∨b∨c)

∧(e∨ f)
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

● CNF can be viewed as a flat tree
● Negating it and converting to
DNF would create a new variable
for every clause

Is not generally useful:
- Will not help early detection
- Will not help propagation
- Will still generate large solutions
 (but do it slower, since more
 resolution steps are needed)

Reconstructing structure

∧

∨ ∨ ∨ ∨ ∨ ∨

∧

∨ ∨ ∨

Reconstructing structure

∧

∨ ∨ ∨

∧

∨ ∨ ∨

Reconstructing structure

● Treating the whole tree as non-
CNF would again create a variable
for every remaining clause, which
is inefficient

∧

∨ ∨ ∨

Reconstructing structure

● Instead, we could create cubes
only for the reconstructed part

∧

Reconstructing structure

● Instead, we could create cubes
only for the reconstructed part
● Let the usual cube gathering
happen in the remainder

(a∨b∨c)
∧(e∨ f)
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

Reconstructing structure

● Instead, we could create cubes
only for the reconstructed part
● Let the usual cube gathering
happen in the remainder

∧
(a∨b∨c)

∧(e∨ f)
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

Partial Duality

● Will not gather cubes from definition clauses
● Creates new universal variables to make

cubes more expressive
● No efficiency loss on poorly reconstructed

instances
● Complete dual propagation on fully

reconstructed instances

∧
(a∨b∨c)

∧(e∨ f)
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

Plaisted-Greenbaum

● Instead of equivalences, uses implication for
variable definitions

● Can be reconstructed using simple syntactic
properties

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

Then: (¬α1∨¬α2∨¬α3∨...)→ x

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

Then: (¬α1∨¬α2∨¬α3∨...)→ x
Set the dual for to be a new universal such that:u

(α1∧α2∧α3∧...)→¬u
x

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

Then: (¬α1∨¬α2∨¬α3∨...)→ x
Set the dual for to be a new universal such that:u

(α1∧α2∧α3∧...)→¬u
x

Intuitively: set
 and then remove blocked clauses and cubes

(¬α1∨¬α2∨¬α3∨...)≡x

Extreme example

● A family of benchmarks with parameter n

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)

∨(e⊕x1⊕x2⊕x3⊕x4⊕...⊕xn)

Conclusions

● CNF does not provide enough information to
reason about solutions

● It is possible to use existing incomplete
methods to partially reconstruct CNF. That
information can be used such that:

– The better the reconstruction, the more
beneficial it is

– If reconstruction is poor, efficiency is not lost

● Plaisted-Greenbaum encoding can also be
reconstructed

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

