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One solution: non-CNF
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for each Tseitin variable
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QBF
Solver

Original Problem

Complete
structure

One solution: non-CNF
- Loses implementation efficiency
- Needs specialized techniques
- Limited benefits from other work

Specialized solvers are
unnecessary.

Existing search-based solvers have all the needed 
mechanisms
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Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

● Clause database is
 initialized from the 
 input CNF

● Cube database starts
 out empty

Empty cube database:
● No early solution detection
● Is only useful far into the 

search
● Often needlessly large 

cubes
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Getting solution structure

Original Problem Negated Problem

NEGATE

Tseitin

CNF

NEGATE

DNF

NOTE: The DNF 
contains universal 
Tseitin variables
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QBF
Solver

Original Problem

CNF
Clause database

(conflicts)

Cube database
(solutions)

DNF

Seeded cube database:
● Detects solutions early
● Is immediately useful
● Smaller starting cubes



  

Reconstructing structure

● Problem: original non-CNF is not always 
available

● Reconstruction methods exist, but they are 
necessarily unreliable and incomplete

● Want to take advantage of partially 
reconstructed information
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...

● CNF can be viewed as a flat tree
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● CNF can be viewed as a flat tree
● Negating it and converting to 
DNF would create a new variable 
for every clause
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Reconstructing structure
(a∨b∨c)

∧(e∨ f )
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...

● CNF can be viewed as a flat tree
● Negating it and converting to 
DNF would create a new variable 
for every clause

Is not generally useful:
- Will not help early detection
- Will not help propagation
- Will still generate large solutions
     (but do it slower, since more
       resolution steps are needed)
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∧

∨ ∨ ∨

∧

∨ ∨ ∨

Reconstructing structure

● Treating the whole tree as non-
CNF would again create a variable 
for every remaining clause, which 
is inefficient
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Reconstructing structure

● Instead, we could create cubes 
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● Let the usual cube gathering 
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Partial Duality

● Will not gather cubes from definition clauses 
● Creates new universal variables to make 

cubes more expressive
● No efficiency loss on poorly reconstructed 

instances
● Complete dual propagation on fully 

reconstructed instances

∧
(a∨b∨c)

∧(e∨ f )
∧(¬a∨¬ f ∨c)
∧(a∨d∨e)
∧(¬a∨¬b)

...



  

Plaisted-Greenbaum

● Instead of equivalences, uses implication for 
variable definitions

● Can be reconstructed using simple syntactic 
properties
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(β4∨¬x)

...
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...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

Then: (¬α1∨¬α2∨¬α3∨...)→ x



  

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

Then: (¬α1∨¬α2∨¬α3∨...)→ x
Set the dual for     to be a new universal     such that:u

(α1∧α2∧α3∧...)→¬u
x



  

(α1∨x)
(α2∨x)
(α3∨x)
(α4∨x)

...

(β1∨¬x)
(β2∨¬x)
(β3∨¬x)
(β4∨¬x)

...

x is tailing

Then: (¬α1∨¬α2∨¬α3∨...)→ x
Set the dual for     to be a new universal     such that:u

(α1∧α2∧α3∧...)→¬u
x

Intuitively: set 
   and then remove blocked clauses and cubes

(¬α1∨¬α2∨¬α3∨...)≡x



  



  



  



  



  

Extreme example

● A family of benchmarks with parameter n

∃e∀ x1 x2 x3 ... xn
(x1⊕x2⊕x3⊕x4⊕...⊕xn)

∨(e⊕x1⊕x2⊕x3⊕x4⊕...⊕xn)



  



  



  

Conclusions

● CNF does not provide enough information to 
reason about solutions

● It is possible to use existing incomplete 
methods to partially reconstruct CNF. That 
information can be used such that:

– The better the reconstruction, the more 
beneficial it is

– If reconstruction is poor, efficiency is not lost

● Plaisted-Greenbaum encoding can also be 
reconstructed



  

Questions?
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