A SAT Approach to Clique-Width

Marijn Heule and Stefan Szeider

The University of Texas at Austin, Vienna University of Technology

July 12, 2013 @ SAT

Motivation

Clique-width is a well-studied in fixed parameter tractability

- over 1200 articles on clique-width on Google Scholar
- small clique-width implies small runtime of various algorithms
- graphs with small clique-width can have arbitrary large tree-width

However, determining the clique-width of a graph is hard

- only very slow algorithms are known
- no existing implementation
- no polynomial-time approximating algorithms
- exact clique-width not known; even for many small graphs

Motivation

Clique-width is a well-studied in fixed parameter tractability

- over 1200 articles on clique-width on Google Scholar
- small clique-width implies small runtime of various algorithms
- graphs with small clique-width can have arbitrary large tree-width

However, determining the clique-width of a graph is hard

- only very slow algorithms are known
- no existing implementation
- no polynomial-time approximating algorithms
- exact clique-width not known; even for many small graphs

Contributions

- Reformulation of Clique-width Developed the concept of a k-derivation of a grpah
- SAT Encoding of Clique-width An efficient SAT encoding using k-derivations
- Representative Encoding

Arc-consistent encoding for conditional cardinality constraints

- Determined the clique-width of many graphs including all graphs up to 10 vertices and famous graphs

Clique-width

Clique-Width

k-graph
A graph whose vertices are labeled by integers from $\{1, \ldots, k\}$.

The clique-width of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of repeated application of the following three operations.
(1) Disjoint union (denoted by \oplus);
(2) Relabeling: changing all labels i to j (denoted by $\rho_{i \rightarrow j}$);
(3) Edge insertion: connecting all vertices labeled by i with all vertices labeled by $j, i \neq j$ (denoted by $\eta_{i, j}$ or $\eta_{j, i}$).

Examples

- Cliques (fully connected graphs) have clique-width 2
- Trees have clique-width of at most 3
- An $n \times n$ grid has clique-width $n-1$

Clique-Width Examples

Examples

- Cliques (fully connected graphs) have clique-width 2
- Trees have clique-width of at most 3
- An $n \times n$ grid has clique-width $n-1$

Clique

Tree

Clique-Width into SAT Difficulties

The clique-width of a graph G is the smallest integer k such that G can be constructed by repeated application of the following three operations.
(1) Disjoint union (denoted by \oplus);
(2) Relabeling: changing all labels i to j (denoted by $\rho_{i \rightarrow j}$);
(3) Edge insertion: connecting all vertices labeled by i with all vertices labeled by $j, i \neq j$ (denoted by $\eta_{i, j}$ or $\eta_{j, i}$).

Worst case number of operations

Given a graph $G(V, E)$ the number of operations is in worst case

- Disjoint union: $\mathcal{O}(|V|)$
- Relabeling: $\mathcal{O}(|V|)$
- Edge insertion: $\mathcal{O}(|E|)$ or $\mathcal{O}\left(|V|^{2}\right)$

Reformulation

Templates \& Derivations

Reformulation goal: abstract away the edge insertions

Definition (Template)

Given a graph $G=(V, E)$, a template T is a partition V into components (induced subgraphs of G) and each component is partitioned into groups (vertices with the same label).

Definition (k-Derivation)

Given a graph $G=(V, E)$, a k-derivation of G is a template sequence $\left(T_{0}, \ldots, T_{t}\right)$ with $\left|c m p\left(T_{0}\right)\right|=|V|,\left|c m p\left(T_{t}\right)\right|=1$, each component in T_{i} has at most k groups. Furthermore, if there is an edge between two groups in T_{i}, they must occur in the same component in T_{i-1} and groups can only be merged if they have the same neighborhood with respect to all vertices in the other components.

Example Derivation

Constraint between templates: If there is an edge between two groups, they must occur in the same component before they can be merged.

Merge group constraint: Groups can only be merged if they have the same neighborhood with respect to all vertices in the other components.
A 3-Derivation of a path of length 3: $(u)-(v)-(w)-(x)$

time	u	v	w	x	template
$t=0$	(1)	(1)	(1)	(1)	$\{\{\{u\}\},\{\{v\}\},\{\{w\}\},\{\{x\}\}\}$
$t=1$		(1)	(1)	(1)	$\{\{\{u\},\{v\}\},\{\{w\}\},\{\{x\}\}\}$
$t=2$			(1)	(1)	$\{\{\{u\},\{v\},\{w\}\},\{\{x\}\}\}$
$t=3$	(3)			(1)	$\{\{\{u, v\},\{w\},\{x\}\}\}$

Encoding

Encoding: Variable and Initial Clauses

Variables:

- $c_{u, v, i}$: vertices $u, v \in V$ are in the same component in template T_{i}.
- $g_{u, v, i}$: vertices $u, v \in V$ are in the same group in template T_{i}.

Initial Clauses:

- Initially all vertices are in different components
- Eventually all vertices are in the same component
- Vertices in a group are in the same component

- Vertices in a component remain in a component
- Vertices in a group remain in a group

- Being in a group or in a component is a transitive relation

Encoding: Variable and Initial Clauses

Variables:

- $c_{u, v, i}:$ vertices $u, v \in V$ are in the same component in template T_{i}.
- $g_{u, v, i}:$ vertices $u, v \in V$ are in the same group in template T_{i}.

Initial Clauses:

- Initially all vertices are in different components
- Eventually all vertices are in the same component
- Vertices in a group are in the same component
- Vertices in a component remain in a component

$$
\begin{aligned}
& \left(\bar{c}_{u, v, i-1} \vee c_{u, v, i}\right) \\
& \left(\bar{g}_{u, v, i-1} \vee g_{u, v, i}\right)
\end{aligned}
$$

- Vertices in a group remain in a group
- Being in a group or in a component is a transitive relation

$$
\begin{array}{r}
\left(\bar{c}_{u, v, i} \vee \bar{c}_{v, w, i} \vee c_{u, w, i}\right) \wedge\left(\bar{c}_{u}, v, i \vee \bar{c}_{u, w, i} \vee c_{v, w, i}\right) \wedge\left(\bar{c}_{u, w, i} \vee \bar{c}_{v, w, i} \vee c_{u, v, i}\right) \\
\left(\bar{g}_{u, v, i} \vee \bar{g}_{v, w, i} \vee g_{u, w, i}\right) \wedge\left(\bar{g}_{u, v, i} \vee \bar{g}_{u, w, i} \vee g_{v, w, i}\right) \wedge\left(\bar{g}_{u, w, i} \vee \bar{g}_{v, w, i} \vee g_{u, v, i}\right)
\end{array}
$$

Encoding: Properties

$u 0-\mathrm{Q}$

Edge Property

For $u, v \in V$ with $u v \in E$, if u, v are in the same group $\left(c_{u, v, i-1} \vee \bar{g}_{u, v, i}\right)$ in T_{i}, then u, v are in the same component in T_{i-1}.

Neighborhood Property

For $u, v, w \in V$ with $u v \in E$ and $u w \notin E$, if v, w are in the same group in T_{i}, then u, v are in the same
$\left(c_{u, v, i-1} \vee \bar{g}_{v, w, i}\right) \quad$ component in T_{i-1}.

$\left(c_{u, v, i-1} \vee \bar{g}_{u, x, i} \vee \bar{g}_{v, w, i}\right)$

Path Property

For $u, v, w, x \in V$, with $u v, u w, v x \in E$ and $w x \notin E$, if u, x and v, w are in the same group in T_{i}, then u, v are in the same component in T_{i-1}.

Encoding: Direct Encoding of Group Cardinality

Variable $I_{v, j, i}$ denotes that vertex v has group number j in template T_{i}.

$$
\bigwedge_{i \in\{1 . . t\}}\left(\bigwedge_{v \in V}\left(I_{v, 1, i} \vee \cdots \vee I_{v, k, i}\right) \wedge \bigwedge_{u, v \in V j \in\{1 . . k\}}\left(\bar{C}_{u, v, i} \bigwedge_{u, v, i} \vee \bar{I}_{u, j, i} \vee \bar{I}_{v, j, i}\right)\right)
$$

Consider the assignment $c_{u, v}=c_{u, w}=c_{u, x}=c_{v, w}=c_{v, x}=c_{w, x}=1$ and $g_{u, v}=g_{u, w}=g_{u, x}=g_{v, w}=g_{v, x}=g_{w, x}=0$. Notice: no conflict!

Encoding: Direct Encoding of Group Cardinality

Variable $I_{v, j, i}$ denotes that vertex v has group number j in template T_{i}.
$\bigwedge_{i \in\{1 . t\}}\left(\bigwedge_{v \in V}\left(I_{v, 1, i} \vee \cdots \vee I_{v, k, i}\right) \wedge \bigwedge_{u, v \in V} \bigwedge_{j \in\{1 . . k\}}\left(\bar{c}_{u, v, i} \vee g_{u, v, i} \vee \bar{I}_{u, j, i} \vee \bar{I}_{V, j, j}\right)\right)$

Example: four vertices $u, v, w, x \in V$ and $k=3$ (no i for readability) $\left(I_{u, 1} \vee I_{u, 2} \vee I_{u, 3}\right) \wedge\left(I_{v, 1} \vee I_{v, 2} \vee I_{v, 3}\right) \wedge\left(I_{\underline{w}, 1} \vee I_{w, 2} \vee I_{w, 3}\right) \wedge\left(I_{x, 1} \vee I_{\underline{x}, 2} \vee I_{\underline{x}, 3}\right) \wedge$ $\left(\bar{c}_{u, v} \vee g_{u, v} \vee \bar{I}_{u, 1} \vee \bar{I}_{v, 1}\right) \wedge\left(\bar{c}_{u, v} \vee g_{u, v} \vee \bar{I}_{u, 2} \vee \bar{I}_{v, 2}\right) \wedge\left(\bar{c}_{u, v} \vee g_{u, v} \vee \bar{I}_{u, 3} \vee \bar{I}_{v, 3}\right) \wedge$ $\left(\bar{c}_{u, w} \vee g_{u, w} \vee \bar{I}_{u, 1} \vee \bar{I}_{\underline{w}, 1}\right) \wedge\left(\bar{c}_{u, w} \vee g_{u, w} \vee \bar{I}_{u, 2} \vee \bar{I}_{w, 2}\right) \wedge\left(\bar{c}_{u, w} \vee g_{u, w} \vee \bar{I}_{u, 3} \vee \bar{I}_{w, 3}\right) \wedge$ $\left(\bar{c}_{u, \chi} \vee g_{u, x} \vee \bar{I}_{u, 1} \vee \bar{I}_{x, 1}\right) \wedge\left(\bar{c}_{u, x} \vee g_{u, x} \vee \bar{I}_{u, 2} \vee \bar{I}_{x, 2}\right) \wedge\left(\bar{c}_{u, x} \vee g_{u, x} \vee \bar{I}_{u, 3} \vee \bar{I}_{x, 3}\right) \wedge$ $\left(\bar{c}_{v, w} \vee g_{v, w} \vee \bar{I}_{v, 1} \vee \bar{I}_{w, 1}\right) \wedge\left(\bar{c}_{v, v} \vee g_{v, w} \vee \bar{I}_{v, 2} \vee \bar{I}_{w, 2}\right) \wedge\left(\bar{c}_{v, w} \vee g_{v, w} \vee \bar{I}_{v, 3} \vee \bar{I}_{w, 3}\right) \wedge$ $\left(\bar{c}_{v, x} \vee g_{v, x} \vee \bar{I}_{v, 1} \vee \bar{I}_{x, 1}\right) \wedge\left(\bar{c}_{v, v} \vee g_{v, x} \vee \bar{I}_{v, 2} \vee \bar{I}_{x, 2}\right) \wedge\left(\bar{c}_{v, x} \vee g_{v, x} \vee \bar{I}_{v, 3} \vee \bar{I}_{x, 3}\right) \wedge$ $\left(\bar{c}_{w, x} \vee g_{w, x} \vee \bar{I}_{w, 1} \vee \bar{l}_{x, 1}\right) \wedge\left(\bar{c}_{w, v} \vee g_{w, x} \vee \bar{I}_{w, 2} \vee \bar{l}_{x, 2}\right) \wedge\left(\bar{c}_{w, x} \vee g_{w, x} \vee \bar{I}_{w, 3} \vee \bar{l}_{x, 3}\right)$ Consider the assignment $c_{u, v}=c_{U, w}=c_{u, x}=c_{V, w}=c_{V, x}=c_{w, x}=1$ and

Encoding: Direct Encoding of Group Cardinality

Variable $I_{v, j, i}$ denotes that vertex v has group number j in template T_{i}.
$\bigwedge\left(\bigwedge\left(I_{v, 1, i} \vee \cdots \vee I_{v, k, i}\right) \wedge \bigwedge \bigwedge\left(\bar{c}_{u, v, i} \vee g_{u, v, i} \vee \bar{I}_{u, j, i} \vee \bar{I}_{v, j, i}\right)\right)$ $i \in\{1 . . t\} \quad v \in V$ $u, v \in V j \in\{1 . . k\}$

Example: four vertices $u, v, w, x \in V$ and $k=3$ (no i for readability) $\left(I_{u, 1} \vee I_{u, 2} \vee I_{u, 3}\right) \wedge\left(I_{v, 1} \vee I_{v, 2} \vee I_{v, 3}\right) \wedge\left(I_{\underline{w}, 1} \vee I_{w, 2} \vee I_{w, 3}\right) \wedge\left(I_{x, 1} \vee I_{\underline{x}, 2} \vee I_{\underline{x}, 3}\right) \wedge$ $\left(\bar{c}_{u, v} \vee g_{u, v} \vee \bar{I}_{u, 1} \vee \bar{I}_{v, 1}\right) \wedge\left(\bar{c}_{u, v} \vee g_{u, v} \vee \bar{I}_{U, 2} \vee \bar{I}_{v, 2}\right) \wedge\left(\bar{c}_{u, v} \vee g_{u, v} \vee \bar{I}_{u, 3} \vee \bar{I}_{v, 3}\right) \wedge$ $\left(\bar{c}_{u, w} \vee g_{u, w} \vee \bar{I}_{u, 1} \vee \bar{I}_{\underline{w}, 1}\right) \wedge\left(\bar{c}_{u, w} \vee g_{u, w} \vee \bar{I}_{u, 2} \vee \bar{I}_{w, 2}\right) \wedge\left(\bar{c}_{u, w} \vee g_{u, w} \vee \bar{I}_{u, 3} \vee \bar{I}_{w, 3}\right) \wedge$ $\left(\bar{c}_{u, \chi} \vee g_{u, \chi} \vee \bar{I}_{u, 1} \vee \bar{I}_{x, 1}\right) \wedge\left(\bar{c}_{u, x} \vee g_{u, \chi} \vee \bar{I}_{u, 2} \vee \bar{I}_{x, 2}\right) \wedge\left(\bar{c}_{u, \chi} \vee g_{u, x} \vee \bar{I}_{u, 3} \vee \bar{I}_{\underline{x}, 3}\right) \wedge$ $\left(\bar{c}_{v, w} \vee g_{v, w} \vee \bar{I}_{v, 1} \vee \bar{I}_{w, 1}\right) \wedge\left(\bar{c}_{v, v} \vee g_{v, w} \vee \bar{I}_{v, 2} \vee \bar{I}_{w, 2}\right) \wedge\left(\bar{c}_{v, w} \vee g_{v, w} \vee \bar{I}_{v, 3} \vee \bar{I}_{w, 3}\right) \wedge$ $\left(\bar{c}_{v, x} \vee g_{v, x} \vee \bar{I}_{v, 1} \vee \bar{I}_{x, 1}\right) \wedge\left(\bar{c}_{v, v} \vee g_{v, x} \vee \bar{I}_{v, 2} \vee \bar{I}_{x, 2}\right) \wedge\left(\bar{c}_{v, x} \vee g_{v, x} \vee \bar{I}_{v, 3} \vee \bar{I}_{x, 3}\right) \wedge$ $\left(\bar{c}_{w, \times} \vee g_{w, x} \vee \bar{I}_{w, 1} \vee \bar{I}_{x, 1}\right) \wedge\left(\bar{c}_{w, v} \vee g_{w, x} \vee \bar{I}_{w, 2} \vee \bar{I}_{x, 2}\right) \wedge\left(\bar{c}_{w, x} \vee g_{w, x} \vee \bar{I}_{w, 3} \vee \bar{I}_{x, 3}\right)$

Consider the assignment $c_{u, v}=c_{u, w}=c_{u, x}=c_{\nu, w}=c_{V, x}=c_{w, x}=1$ and $g_{u, v}=g_{u, w}=g_{u, x}=g_{v, w}=g_{v, x}=g_{v, x}=0$. Notice: no conflict!

Encoding: Representative and Order Variables

Variable $r_{v, i}$ denotes that v is the representative of its group in T_{i}.
Vertex v represents group g if and only if for all $u \in g$ holds that $u \geq v$: $\left(r_{v, i} \vee \bigvee_{u \in V, u<v} g_{u, v, i}\right) \wedge \bigwedge_{u \in V, u<v}\left(\bar{r}_{v, i} \vee \bar{g}_{u, v, i}\right) \quad$ for $v \in V, 0 \leq i \leq t$

Encoding: Representative and Order Variables

Variable $r_{v, i}$ denotes that v is the representative of its group in T_{i}.
Vertex v represents group g if and only if for all $u \in g$ holds that $u \geq v$:
$\left(r_{v, i} \vee \bigvee_{u \in V, u<v} g_{u, v, i}\right) \wedge \bigwedge_{u \in V, u<v}\left(\bar{r}_{v, i} \vee \bar{g}_{u, v, i}\right) \quad$ for $v \in V, 0 \leq i \leq t$

Variable $o_{v, j, i}^{>}$denotes that the group number of v in T_{i} is larger than j.
Easy to obtain the group number from order variables
$I_{v, 1, i}=1 \leftrightarrow 0000 \leftrightarrow o_{v, 1, i}^{>}=o_{v, 2, i}^{>}=o_{v, 3, i}^{>}=o_{v, 4, i}^{>}=0$
$I_{v, 2, i}=1 \leftrightarrow 1000 \leftrightarrow o_{v, 1, i}^{>}=1, o_{v, 2, i}^{>}=o_{v, 3, i}^{>}=o_{v, 4, i}^{>}=0$
$I_{v, 3, i}=1 \leftrightarrow 1100 \leftrightarrow o_{v, 1, i}^{>}=o_{v, 2, i}^{>}=1, o_{v, 3, i}^{>}=o_{v, 4, i}^{>}=0$
$I_{v, 4, i}=1 \leftrightarrow 1110 \leftrightarrow o_{v, 1, i}^{>}=o_{v, 2, i}^{>}=o_{v, 3, i}^{>}=1, o_{v, 4, i}^{>}=0$
$I_{v, 5, i}=1 \leftrightarrow 1111 \leftrightarrow o_{v, 1, i}^{>}=o_{v, 2, i}^{>}=o_{v, 3, i}^{>}=o_{v, 4, i}^{>}=1$

Encoding: Representative Encoding of Group Cardinality

Combining representative and order variables with $u<v$:

$$
\begin{aligned}
& \left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, k-1, i}^{>}\right) \wedge\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee o_{v, 1, i}^{>}\right) \wedge \\
& \bigwedge_{1 \leq a<k-1}\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, a, i}^{>} \vee o_{v, a+1, i}^{>}\right) \quad \text { for } u, v \in \vee, 0 \leq i \leq t .
\end{aligned}
$$

Encoding: Representative Encoding of Group Cardinality

Combining representative and order variables with $u<v$:

$$
\begin{aligned}
& \left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, k-1, i}^{>}\right) \wedge\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee o_{v, 1, i}^{>}\right) \wedge \\
& \bigwedge_{1 \leq a<k-1}\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, a, i}^{>} \vee o_{v, a+1, i}^{>}\right) \quad \text { for } u, v \in \vee, 0 \leq i \leq t .
\end{aligned}
$$

Example: four vertices $u, v, w, x \in V$ and $k=3$ (no i for readability) $\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee \bar{o}_{u, 2}^{>}\right) \wedge\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee o_{v, 1}^{>}\right) \wedge\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee \bar{o}_{u, 1}^{>} \vee o_{v, 2}^{>}\right) \wedge$ $\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee \bar{o}_{u, 2}^{>}\right) \wedge\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee o_{w, 1}^{>}\right) \wedge\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee \bar{o}_{u, 1}^{>} \vee o_{w, 2}^{>}\right) \wedge$ $\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee \bar{o}_{u, 2}^{>}\right) \wedge\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee \bar{o}_{u, 1}^{>} \vee o_{x, 2}^{>}\right) \wedge$ $\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee \bar{o}_{v, 2}^{>}\right) \wedge\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee o_{w, 1}^{>}\right) \wedge\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee \bar{o}_{v, 1}^{>} \vee o_{w, 2}^{>}\right) \wedge$ $\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee \bar{o}_{v, 2}^{>}\right) \wedge\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee \bar{o}_{v, 1}^{>} \vee o_{x, 2}^{>}\right) \wedge$ $\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w, 2}^{>}\right) \wedge\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w, 1}^{>} \vee o_{x, 2}^{>}\right)$

Encoding: Representative Encoding of Group Cardinality

Combining representative and order variables with $u<v$:
$\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, k-1, i}^{>}\right) \wedge\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee o_{v, 1, i}^{>}\right) \wedge$
$\bigwedge_{1 \leq a<k-1}\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, a, i}^{>} \vee o_{v, a+1, i}^{>}\right) \quad$ for $u, v \in V, 0 \leq i \leq t$.

Example: four vertices $u, v, w, x \in V$ and $k=3$ (no i for readability) $\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee \bar{o}_{u, 2}^{>}\right) \wedge\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee o_{v, 1}^{>}\right) \wedge\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee \bar{o}_{u, 1}^{>} \vee o_{v, 2}^{>}\right) \wedge$ $\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee \bar{o}_{u, 2}^{>}\right) \wedge\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee o_{w, 1}^{>}\right) \wedge\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee \bar{o}_{u, 1}^{>} \vee o_{w, 2}^{>}\right) \wedge$ $\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee \bar{o}_{u, 2}^{>}\right) \wedge\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee \bar{o}_{u, 1}^{>} \vee o_{x, 2}^{>}\right) \wedge$ $\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee \bar{o}_{v, 2}^{>}\right) \wedge\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee o_{w, 1}^{>}\right) \wedge\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee \bar{o}_{v, 1}^{>} \vee o_{w, 2}^{>}\right) \wedge$ $\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee \bar{o}_{v, 2}^{>}\right) \wedge\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee \bar{o}_{v, 1}^{>} \vee o_{x, 2}^{>}\right) \wedge$ $\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w, 2}^{>}\right) \wedge\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w, 1}^{>} \vee o_{x, 2}^{>}\right)$

Consider the assignment $c_{u, v}=c_{u, w}=c_{u, x}=c_{v, w}=c_{v, x}=c_{w, x}=1$ and $r_{u}=r_{v}=r_{w}=r_{x}=1$.

Encoding: Representative Encoding of Group Cardinality

Combining representative and order variables with $u<v$:
$\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, k-1, i}^{>}\right) \wedge\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee o_{v, 1, i}^{>}\right) \wedge$
$\bigwedge_{1 \leq a<k-1}\left(\bar{c}_{u, v, i} \vee \bar{r}_{u, i} \vee \bar{r}_{v, i} \vee \bar{o}_{u, a, i}^{>} \vee o_{v, a+1, i}^{>}\right) \quad$ for $u, v \in V, 0 \leq i \leq t$.

Example: four vertices $u, v, w, x \in V$ and $k=3$ (no i for readability) $\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee \bar{o}_{u, 2}\right) \wedge\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee o_{v, 1}^{>}\right) \wedge\left(\bar{c}_{u, v} \vee \bar{r}_{u} \vee \bar{r}_{v} \vee \bar{o}_{u, 1}^{>} \vee o_{v, 2}^{>}\right) \wedge$ $\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee \bar{o}_{u, 2}\right) \wedge\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee o_{w, 1}^{>}\right) \wedge\left(\bar{c}_{u, w} \vee \bar{r}_{u} \vee \bar{r}_{w} \vee \bar{o}_{u, 1}^{\gg 1} \vee o_{w, 2}^{>}\right) \wedge$ $\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee \bar{o}_{u, 2}\right) \wedge\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{u, x} \vee \bar{r}_{u} \vee \bar{r}_{x} \vee \bar{o}_{u, 1}^{>} \vee o_{x, 2}^{>}\right) \wedge$ $\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee \bar{o}_{v, 2}\right) \wedge\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee o_{w, 1}^{*}\right) \wedge\left(\bar{c}_{v, w} \vee \bar{r}_{v} \vee \bar{r}_{w} \vee \bar{o}_{v, 1}^{>} \vee o_{w, 2}^{>}\right) \wedge$ $\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee \bar{o}_{v, 2}\right) \wedge\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee o_{x, 1}\right) \wedge\left(\bar{c}_{v, x} \vee \bar{r}_{v} \vee \bar{r}_{x} \vee \bar{o}_{v, 1}^{>} \vee o_{x, 2}^{>}\right) \wedge$ $\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w, 2}^{>}\right) \wedge\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee o_{x, 1}^{>}\right) \wedge\left(\bar{c}_{w, x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w, 1}^{>} \vee o_{x, 2}^{>}\right)$

Consider the assignment $c_{u, v}=c_{u, w}=c_{u, x}=c_{v, w}=c_{v, x}=c_{w, x}=1$ and $r_{u}=r_{v}=r_{w}=r_{x}=1$. Unit propagation results in a conflict!

Results

Results overview

For all experiments we used the Glucose 2.2 solver. All formulas were generated using the representative encoding of k-derivations.

k	6	7	8	9	10	11	12	13	14
direct	638.5	18,337	TO	TO	TO	TO	30.57	0.67	0.50
repres	12.14	33.94	102.3	358.6	9.21	0.40	0.35	0.32	0.29

Three types of graphs:

- Random graphs with different edge probabilities
- All prime graphs with 10 vertices or less
- Famous graphs

Results overview

For all experiments we used the Glucose 2.2 solver. All formulas were generated using the representative encoding of k-derivations.

k	6	7	8	9	10	11	12	13	14
direct	638.5	18,337	TO	TO	TO	TO	30.57	0.67	0.50
repres	12.14	33.94	102.3	358.6	9.21	0.40	0.35	0.32	0.29

To determine the clique-width of a graph $G=(V, E)$, we initialized $k=|V|$ and decreased k until the corresponding formula was unsatisfiable.

Three types of graphs:

- Random graphs with different edge probabilities
- All prime graphs with 10 vertices or less
- Famous graphs

Random Graphs

Clique-Width Numbers

			clique-width					
$\|V\|$	connected	prime	2	3	4	5	6	
4	6	1	0	$\mathbf{1}$	0	0	0	
5	21	4	0	4	0	0	0	
6	112	26	0	25	$\mathbf{1}$	0	0	
7	853	260	0	210	50	0	0	
8	11,117	4,670	0	1,873	2,790	$\mathbf{7}$	0	
9	261,080	145,870	0	16,348	125,364	4,158	0	
10	$11,716,571$	$8,110,354$	0	142,745	$5,520,350$	$2,447,190$	$\mathbf{6 8}$	

Proposition

The clique-width sequence starts with the numbers $1,2,4,6,8,10,11$.

Smallest Graphs with Clique-Width 3, 4, 5, and 6

Famous Graphs

graph	$\|V\|$	$\|E\|$	cwd	variables	clauses	UNSAT	SAT
Brinkmann	21	42	10	8,526	163,065	3,933	1.79
Clebsch	16	40	8	3,872	60,520	191	0.09
Desargues	20	30	8	7,800	141,410	3,163	0.26
Dodecahedron	20	30	8	7,800	141,410	5,310	0.33
Errera	17	45	8	4,692	79,311	82	0.16
Flower snark	20	30	7	8,000	148,620	276	3.90
Folkman	20	40	5	8,280	168,190	12	0.36
Kittell	23	63	8	12,006	281,310	179	18.65
McGee	24	36	8	13,680	303,660	8,700	59.89
Paley-13	13	39	9	1,820	22,776	13	0.05
Paley-17	17	68	11	3,978	72,896	194	0.12
Pappus	18	27	8	5,616	90,315	983	0.14
Robertson	19	38	9	6,422	112,461	478	0.76

Conclusions

Encoded the clique-with problem into SAT

- Conventional formulation is not suitable for encoding
- Reformulation based on derivations enables parallel operations
- Representative encoding is much more efficient than direct encoding

Results

- Discovered the smallest graphs with clique-width 4,5 , and 6
- Observed the influence of the edge-probability on the clique-width
- Determined the clique-width of several famous graphs

Future work

- Evaluate the effectiveness of heuristics for clique-width
- Use the results for theoretical investigations
- Approximating clique-width by limiting the number of steps

A SAT Approach to Clique-Width

Marijn Heule and Stefan Szeider

The University of Texas at Austin, Vienna University of Technology

July 12, 2013 @ SAT

