A SAT Approach to Clique-Width

Marijn Heule and Stefan Szeider

The University of Texas at Austin, Vienna University of Technology

July 12, 2013 @ SAT

Motivation

Clique-width is a well-studied in fixed parameter tractability

- over 1200 articles on clique-width on Google Scholar
- small clique-width implies small runtime of various algorithms
- graphs with small clique-width can have arbitrary large tree-width

However, determining the clique-width of a graph is hard

- only very slow algorithms are known
- no existing implementation
- no polynomial-time approximating algorithms
- exact clique-width not known; even for many small graphs

B b d B b

Motivation

Clique-width is a well-studied in fixed parameter tractability

- over 1200 articles on clique-width on Google Scholar
- small clique-width implies small runtime of various algorithms
- graphs with small clique-width can have arbitrary large tree-width

However, determining the clique-width of a graph is hard

- only very slow algorithms are known
- no existing implementation
- no polynomial-time approximating algorithms
- exact clique-width not known; even for many small graphs

Contributions

- Reformulation of Clique-width
 Developed the concept of a k-derivation of a grpah
- SAT Encoding of Clique-width An efficient SAT encoding using k-derivations
- *Representative Encoding* Arc-consistent encoding for conditional cardinality constraints
- Determined the clique-width of many graphs including all graphs up to 10 vertices and famous graphs

Clique-width

-

э

Clique-Width

k-graph

A graph whose vertices are labeled by integers from $\{1, \ldots, k\}$.

The *clique-width* of a graph G is the smallest integer k such that G can be constructed from initial k-graphs by means of repeated application of the following three operations.

- Disjoint union (denoted by \oplus);
- **2** Relabeling: changing all labels *i* to *j* (denoted by $\rho_{i \rightarrow j}$);
- Section: connecting all vertices labeled by *i* with all vertices labeled by *j*, *i* ≠ *j* (denoted by η_{i,j} or η_{j,i}).

Examples

- Cliques (fully connected graphs) have clique-width 2
- Trees have clique-width of at most 3
- An $n \times n$ grid has clique-width n-1

Clique-Width Examples

Examples

- Cliques (fully connected graphs) have clique-width 2
- Trees have clique-width of at most 3
- An $n \times n$ grid has clique-width n-1

Clique-Width into SAT Difficulties

The *clique-width* of a graph G is the smallest integer k such that G can be constructed by repeated application of the following three operations.

- Disjoint union (denoted by \oplus);
- **2** Relabeling: changing all labels *i* to *j* (denoted by $\rho_{i \rightarrow j}$);
- Section Section: connecting all vertices labeled by *i* with all vertices labeled by *j*, *i* ≠ *j* (denoted by η_{i,j} or η_{j,i}).

Worst case number of operations

Given a graph G(V, E) the number of operations is in worst case

- Disjoint union: $\mathcal{O}(|V|)$
- Relabeling: $\mathcal{O}(|V|)$
- Edge insertion: $\mathcal{O}(|E|)$ or $\mathcal{O}(|V|^2)$

イロト 不得 とうせい かほとう ほ

Reformulation

э

Templates & Derivations

Reformulation goal: abstract away the edge insertions

Definition (Template)

Given a graph G = (V, E), a *template* T is a partition V into components (induced subgraphs of G) and each component is partitioned into groups (vertices with the same label).

Definition (*k*-Derivation)

Given a graph G = (V, E), a *k*-derivation of G is a template sequence (T_0, \ldots, T_t) with $|cmp(T_0)| = |V|$, $|cmp(T_t)| = 1$, each component in T_i has at most k groups. Furthermore, if there is an edge between two groups in T_i , they must occur in the same component in T_{i-1} and groups can only be merged if they have the same neighborhood with respect to all vertices in the other components.

イロト 不得 とうせい かほとう ほ

Example Derivation

Constraint between templates: If there is an edge between two groups, they must occur in the same component before they can be merged.

Merge group constraint: Groups can only be merged if they have the same neighborhood with respect to all vertices in the other components.

A 3-Derivation of a path of length 3: $(u)-(v)-(w)-(x)$									
time	и	V	W	x	template				
t = 0		1	1	1	$\left\{\{\{u\}\},\{\{v\}\},\{\{w\}\},\{\{x\}\}\}\right\}$				
t = 1	2—	-1	1	1	$\left\{ \{\{u\}, \{v\}\}, \{\{w\}\}, \{\{x\}\} \right\}$				
<i>t</i> = 2	3—	-2-	-1	1	$\left\{ \{\{u\}, \{v\}, \{w\}\}, \{\{x\}\} \right\}$				
<i>t</i> = 3	3—	-3-	-2-	-1	$\left\{\left\{\{u,v\},\{w\},\{x\}\right\}\right\}$				

Encoding

э

< 同 ▶

Encoding: Variable and Initial Clauses

Variables:

- $c_{u,v,i}$: vertices $u, v \in V$ are in the same component in template T_i .
- $g_{u,v,i}$: vertices $u, v \in V$ are in the same group in template T_i .

Initial Clauses:

- Initially all vertices are in different components
- Eventually all vertices are in the same component
- Vertices in a group are in the same component
- Vertices in a component remain in a component
- Vertices in a group remain in a group
- Being in a group or in a component is a transitive relation

 $(\overline{c}_{u,v,i} \lor \overline{c}_{v,w,i} \lor c_{u,w,i}) \land (\overline{c}_{u,v,i} \lor \overline{c}_{u,w,i} \lor c_{v,w,i}) \land (\overline{c}_{u,w,i} \lor \overline{c}_{v,w,i} \lor c_{u,v,i})$ $(\overline{g}_{u,v,i} \lor \overline{g}_{v,w,i} \lor g_{u,w,i}) \land (\overline{g}_{u,v,i} \lor \overline{g}_{u,w,i} \lor g_{v,w,i}) \land (\overline{g}_{u,w,i} \lor \overline{g}_{v,w,i} \lor g_{u,v,i})$

Encoding: Variable and Initial Clauses

Variables:

- $c_{u,v,i}$: vertices $u, v \in V$ are in the same component in template T_i .
- $g_{u,v,i}$: vertices $u, v \in V$ are in the same group in template T_i .

Initial Clauses:

- Initially all vertices are in different components $(\bar{c}_{u,v,0})$
- Eventually all vertices are in the same component
- Vertices in a group are in the same component
- Vertices in a component remain in a component
- Vertices in a group remain in a group
- Being in a group or in a component is a transitive relation

 $(\bar{c}_{u,v,i} \lor \bar{c}_{v,w,i} \lor c_{u,w,i}) \land (\bar{c}_{u,v,i} \lor \bar{c}_{u,w,i} \lor c_{v,w,i}) \land (\bar{c}_{u,w,i} \lor \bar{c}_{v,w,i} \lor c_{u,v,i})$ $(\bar{g}_{u,v,i} \lor \bar{g}_{v,w,i} \lor g_{u,w,i}) \land (\bar{g}_{u,v,i} \lor \bar{g}_{u,w,i} \lor g_{v,w,i}) \land (\bar{g}_{u,w,i} \lor \bar{g}_{v,w,i} \lor g_{u,v,i})$

 $(c_{\mu,\nu,t})$

 $(c_{\mu\nu,i} \vee \overline{g}_{\mu\nu,i})$

 $(\bar{c}_{\mu\nu,i-1} \vee c_{\mu\nu,i})$

 $(\bar{g}_{\mu\nu\nu,i-1} \vee g_{\mu\nu\nu,i})$

Encoding: Properties

 $u \bullet v$ Edge Property
For $u, v \in V$ with $uv \in E$, if u, v are in the same group
in T_i , then u, v are in the same component in T_{i-1} .

Neighborhood Property

For $u, v, w \in V$ with $uv \in E$ and $uw \notin E$, if v, w are in the same group in T_i , then u, v are in the same component in T_{i-1} .

 $(c_{u,v,i-1} \vee \overline{g}_{u,x,i} \vee \overline{g}_{v,w,i})$

Path Property

For $u, v, w, x \in V$, with $uv, uw, vx \in E$ and $wx \notin E$, if u, x and v, w are in the same group in T_i , then u, v are in the same component in T_{i-1} .

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Encoding: Direct Encoding of Group Cardinality Variable $I_{v,j,i}$ denotes that vertex v has group number j in template T_i .

$$\bigwedge_{i\in\{1..t\}} \big(\bigwedge_{v\in V} (I_{v,1,i} \lor \cdots \lor I_{v,k,i}) \land \bigwedge_{u,v\in V} \bigwedge_{j\in\{1..k\}} (\bar{c}_{u,v,i} \lor g_{u,v,i} \lor \bar{I}_{u,j,i} \lor \bar{I}_{v,j,i})\big)$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(l_{u,1} \lor l_{u,2} \lor l_{u,3}) \land (l_{v,1} \lor l_{v,2} \lor l_{v,3}) \land (l_{w,1} \lor l_{w,2} \lor l_{w,3}) \land (l_{x,1} \lor l_{x,2} \lor l_{x,3}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,1} \lor \overline{l}_{v,1}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,2} \lor \overline{l}_{v,2}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,3} \lor \overline{l}_{v,3}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{u,x} \lor g_{u,x} \lor \overline{l}_{u,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{u,x} \lor g_{u,x} \lor \overline{l}_{u,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{u,x} \lor g_{u,x} \lor \overline{l}_{u,3} \lor \overline{l}_{x,3}) \land (\overline{c}_{v,w} \lor g_{v,w} \lor \overline{l}_{v,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{v,v} \lor g_{v,w} \lor \overline{l}_{v,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{v,w} \lor g_{v,w} \lor \overline{l}_{v,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{v,x} \lor g_{v,x} \lor \overline{l}_{v,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{v,v} \lor g_{v,x} \lor \overline{l}_{v,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{v,x} \lor g_{v,x} \lor \overline{l}_{v,3} \lor \overline{l}_{x,3}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{w,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{w,v} \lor g_{w,x} \lor \overline{l}_{w,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{w,3} \lor \overline{l}_{x,3})$

Consider the assignment $c_{u,v} = c_{u,w} = c_{u,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $g_{u,v} = g_{u,w} = g_{u,x} = g_{v,w} = g_{v,x} = g_{w,x} = 0$. Notice: no conflict!

Encoding: Direct Encoding of Group Cardinality Variable $I_{v,j,i}$ denotes that vertex v has group number j in template T_i .

$$\bigwedge_{i\in\{1..t\}} \big(\bigwedge_{v\in V} (I_{v,1,i} \vee \cdots \vee I_{v,k,i}) \wedge \bigwedge_{u,v\in V} \bigwedge_{j\in\{1..k\}} (\bar{c}_{u,v,i} \vee g_{u,v,i} \vee \bar{I}_{u,j,i} \vee \bar{I}_{v,j,i})\big)$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(l_{u,1} \lor l_{u,2} \lor l_{u,3}) \land (l_{v,1} \lor l_{v,2} \lor l_{v,3}) \land (l_{w,1} \lor l_{w,2} \lor l_{w,3}) \land (l_{x,1} \lor l_{x,2} \lor l_{x,3}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,1} \lor \overline{l}_{v,1}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,2} \lor \overline{l}_{v,2}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,3} \lor \overline{l}_{v,3}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{u,x} \lor g_{u,x} \lor \overline{l}_{u,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{u,x} \lor g_{u,x} \lor \overline{l}_{u,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{u,x} \lor g_{u,w} \lor \overline{l}_{u,3} \lor \overline{l}_{x,3}) \land (\overline{c}_{v,w} \lor g_{v,w} \lor \overline{l}_{v,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{v,v} \lor g_{v,w} \lor \overline{l}_{v,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{v,w} \lor g_{v,w} \lor \overline{l}_{v,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{v,x} \lor g_{v,x} \lor \overline{l}_{v,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{v,v} \lor g_{v,x} \lor \overline{l}_{v,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{v,x} \lor g_{v,x} \lor \overline{l}_{v,3} \lor \overline{l}_{x,3}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{w,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{w,v} \lor g_{w,x} \lor \overline{l}_{w,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{v,3} \lor \overline{l}_{x,3}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{w,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{w,v} \lor g_{w,x} \lor \overline{l}_{w,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{w,3} \lor \overline{l}_{x,3})$

Consider the assignment $c_{u,v} = c_{u,w} = c_{v,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $g_{u,v} = g_{u,w} = g_{u,x} = g_{v,w} = g_{v,x} = g_{w,x} = 0$. Notice: no conflict!

Encoding: Direct Encoding of Group Cardinality Variable $I_{v,j,i}$ denotes that vertex v has group number j in template T_i .

$$\bigwedge_{i\in\{1..t\}} \big(\bigwedge_{v\in V} (I_{v,1,i} \vee \cdots \vee I_{v,k,i}) \wedge \bigwedge_{u,v\in V} \bigwedge_{j\in\{1..k\}} (\bar{c}_{u,v,i} \vee g_{u,v,i} \vee \bar{I}_{u,j,i} \vee \bar{I}_{v,j,i})\big)$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(l_{u,1} \lor l_{u,2} \lor l_{u,3}) \land (l_{v,1} \lor l_{v,2} \lor l_{v,3}) \land (l_{w,1} \lor l_{w,2} \lor l_{w,3}) \land (l_{x,1} \lor l_{x,2} \lor l_{x,3}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,1} \lor \overline{l}_{v,1}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,2} \lor \overline{l}_{v,2}) \land (\overline{c}_{u,v} \lor g_{u,v} \lor \overline{l}_{u,3} \lor \overline{l}_{v,3}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{u,w} \lor g_{u,w} \lor \overline{l}_{u,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{v,w} \lor g_{v,w} \lor \overline{l}_{v,1} \lor \overline{l}_{w,1}) \land (\overline{c}_{v,v} \lor g_{v,w} \lor \overline{l}_{v,2} \lor \overline{l}_{w,2}) \land (\overline{c}_{v,w} \lor g_{v,w} \lor \overline{l}_{v,3} \lor \overline{l}_{w,3}) \land (\overline{c}_{v,x} \lor g_{v,x} \lor \overline{l}_{v,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{v,v} \lor g_{v,x} \lor \overline{l}_{v,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{v,x} \lor g_{v,x} \lor \overline{l}_{v,3} \lor \overline{l}_{x,3}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{w,1} \lor \overline{l}_{x,1}) \land (\overline{c}_{w,v} \lor g_{w,x} \lor \overline{l}_{w,2} \lor \overline{l}_{x,2}) \land (\overline{c}_{w,x} \lor g_{w,x} \lor \overline{l}_{v,3} \lor \overline{l}_{x,3})$

Consider the assignment $c_{u,v} = c_{u,w} = c_{u,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $g_{u,v} = g_{u,w} = g_{u,x} = g_{v,w} = g_{v,x} = g_{w,x} = 0$. Notice: no conflict!

Encoding: Representative and Order Variables

Variable $r_{v,i}$ denotes that v is the representative of its group in T_i .

Vertex v represents group g if and only if for all $u \in g$ holds that $u \ge v$:

 $(r_{v,i} \vee \bigvee_{u \in V, u < v} g_{u,v,i}) \land \bigwedge_{u \in V, u < v} (\bar{r}_{v,i} \vee \bar{g}_{u,v,i}) \quad \text{for } v \in V, \ 0 \le i \le t$

Variable $o_{v,j,i}^{>}$ denotes that the group number of v in T_i is larger than j.

Easy to obtain the group number from order variables

$$\begin{split} & l_{v,1,i} = 1 \ \leftrightarrow \ 0000 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = o_{v,3,i}^{>} = o_{v,4,i}^{>} = 0 \\ & l_{v,2,i} = 1 \ \leftrightarrow \ 1000 \ \leftrightarrow \ o_{v,1,i}^{>} = 1, o_{v,2,i}^{>} = o_{v,3,i}^{>} = o_{v,4,i}^{>} = 0 \\ & l_{v,3,i} = 1 \ \leftrightarrow \ 1100 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = 1, o_{v,3,i}^{>} = o_{v,4,i}^{>} = 0 \\ & l_{v,4,i} = 1 \ \leftrightarrow \ 1110 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = 0, o_{v,3,i}^{>} = 1, o_{v,4,i}^{>} = 0 \\ & l_{v,5,i} = 1 \ \leftrightarrow \ 1111 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = o_{v,3,i}^{>} = 0, o_{v,4,i}^{>} = 0 \end{split}$$

Encoding: Representative and Order Variables

Variable $r_{v,i}$ denotes that v is the representative of its group in T_i .

Vertex v represents group g if and only if for all $u \in g$ holds that $u \ge v$:

$$(r_{v,i} \lor \bigvee_{u \in V, u < v} g_{u,v,i}) \land \bigwedge_{u \in V, u < v} (\overline{r}_{v,i} \lor \overline{g}_{u,v,i})$$
 for $v \in V$, $0 \le i \le t$

Variable $o_{v,j,i}^{>}$ denotes that the group number of v in T_i is larger than j.

Easy to obtain the group number from order variables

$$\begin{array}{l} l_{v,1,i} = 1 \ \leftrightarrow \ 0000 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = o_{v,3,i}^{>} = o_{v,4,i}^{>} = 0 \\ l_{v,2,i} = 1 \ \leftrightarrow \ 1000 \ \leftrightarrow \ o_{v,1,i}^{>} = 1, o_{v,2,i}^{>} = o_{v,3,i}^{>} = o_{v,4,i}^{>} = 0 \\ l_{v,3,i} = 1 \ \leftrightarrow \ 1100 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = 1, o_{v,3,i}^{>} = o_{v,4,i}^{>} = 0 \\ l_{v,4,i} = 1 \ \leftrightarrow \ 1110 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = o_{v,3,i}^{>} = 1, o_{v,4,i}^{>} = 0 \\ l_{v,5,i} = 1 \ \leftrightarrow \ 1111 \ \leftrightarrow \ o_{v,1,i}^{>} = o_{v,2,i}^{>} = o_{v,3,i}^{>} = o_{v,4,i}^{>} = 1 \end{array}$$

Combining representative and order variables with u < v:

$$(\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,k-1,i}^{>}) \wedge (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee o_{v,1,i}^{>}) \wedge \\ \bigwedge_{1 \leq a < k-1} (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,a,i}^{>} \vee o_{v,a+1,i}^{>}) \quad \text{for } u, v \in V, \ 0 \leq i \leq t.$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(\overline{c}_{u,v} \lor \overline{r}_u \lor \overline{r}_v \lor \overline{o}_{u,2}) \land (\overline{c}_{u,v} \lor \overline{r}_u \lor \overline{r}_v \lor o_{v,1}^>) \land (\overline{c}_{u,v} \lor \overline{r}_u \lor \overline{r}_v \lor \overline{o}_{u,1}^> \lor o_{v,2}^>) \land$ $(\overline{c}_{u,w} \lor \overline{r}_u \lor \overline{r}_w \lor \overline{o}_{u,2}) \land (\overline{c}_{u,w} \lor \overline{r}_u \lor \overline{r}_w \lor o_{w,1}^>) \land (\overline{c}_{u,w} \lor \overline{r}_u \lor \overline{r}_w \lor \overline{o}_{u,1}^> \lor o_{w,2}^>) \land$ $(\overline{c}_{u,x} \lor \overline{r}_u \lor \overline{r}_x \lor \overline{o}_{u,2}) \land (\overline{c}_{u,x} \lor \overline{r}_u \lor \overline{r}_x \lor o_{x,1}^>) \land (\overline{c}_{u,x} \lor \overline{r}_u \lor \overline{r}_x \lor \overline{o}_{u,1}^> \lor o_{x,2}^>) \land$ $(\overline{c}_{v,w} \lor \overline{r}_v \lor \overline{r}_w \lor \overline{o}_{v,2}) \land (\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_w \lor o_{w,1}^>) \land (\overline{c}_{v,w} \lor \overline{r}_v \lor \overline{r}_w \lor \overline{o}_{v,1}^> \lor o_{w,2}^>) \land$ $(\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_x \lor \overline{o}_{v,2}) \land (\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_x \lor o_{x,1}^>) \land (\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_x \lor \overline{o}_{v,1}^> \lor o_{x,2}^>) \land$ $(\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor \overline{o}_{w,2}) \land (\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor o_{x,1}^>) \land (\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor \overline{o}_{w,1}^>) < \overline{c}_{x,2}$

Consider the assignment $c_{u,v} = c_{u,w} = c_{v,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $r_u = r_v = r_w = r_x = 1$. Unit propagation results in a conflict!

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Combining representative and order variables with u < v:

$$(\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,k-1,i}^{>}) \wedge (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee o_{v,1,i}^{>}) \wedge \\ \bigwedge_{1 \leq a < k-1} (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,a,i}^{>} \vee o_{v,a+1,i}^{>}) \quad \text{for } u, v \in V, \ 0 \leq i \leq t.$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(\overline{c}_{u,v} \lor \overline{r}_u \lor \overline{r}_v \lor \overline{o}_{u,2}) \land (\overline{c}_{u,v} \lor \overline{r}_u \lor \overline{r}_v \lor o_{v,1}) \land (\overline{c}_{u,v} \lor \overline{r}_u \lor \overline{r}_v \lor \overline{o}_{u,1} \lor o_{v,2}) \land$ $(\overline{c}_{u,w} \lor \overline{r}_u \lor \overline{r}_w \lor \overline{o}_{u,2}) \land (\overline{c}_{u,w} \lor \overline{r}_u \lor \overline{r}_w \lor o_{w,1}) \land (\overline{c}_{u,w} \lor \overline{r}_u \lor \overline{r}_w \lor \overline{o}_{u,1} \lor o_{w,2}) \land$ $(\overline{c}_{u,x} \lor \overline{r}_u \lor \overline{r}_x \lor \overline{o}_{u,2}) \land (\overline{c}_{u,x} \lor \overline{r}_u \lor \overline{r}_x \lor o_{x,1}) \land (\overline{c}_{u,x} \lor \overline{r}_u \lor \overline{r}_x \lor \overline{o}_{u,1} \lor o_{x,2}) \land$ $(\overline{c}_{v,w} \lor \overline{r}_v \lor \overline{r}_w \lor \overline{o}_{v,2}) \land (\overline{c}_{v,w} \lor \overline{r}_v \lor \overline{r}_w \lor o_{w,1}) \land (\overline{c}_{v,w} \lor \overline{r}_v \lor \overline{r}_w \lor \overline{o}_{v,1} \lor o_{x,2}) \land$ $(\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_x \lor \overline{o}_{v,2}) \land (\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_x \lor o_{x,1}) \land (\overline{c}_{v,x} \lor \overline{r}_v \lor \overline{r}_x \lor \overline{o}_{v,1} \lor o_{x,2}) \land$ $(\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor \overline{o}_{v,2}) \land (\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor o_{x,1}) \land (\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor \overline{o}_{w,1} \lor o_{x,2}) \land$ $(\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor \overline{o}_{w,2}) \land (\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor o_{x,1}) \land (\overline{c}_{w,x} \lor \overline{r}_w \lor \overline{r}_x \lor \overline{o}_{w,1} \lor o_{x,2})$

Consider the assignment $c_{u,v} = c_{u,w} = c_{u,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $r_u = r_v = r_w = r_x = 1$. Unit propagation results in a conflict!

イロト 不得 とくほ とくほ とうしょう

Combining representative and order variables with u < v:

$$(\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,k-1,i}^{>}) \wedge (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee o_{v,1,i}^{>}) \wedge \\ \bigwedge_{1 \leq a < k-1} (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,a,i}^{>} \vee o_{v,a+1,i}^{>}) \quad \text{for } u, v \in V, \ 0 \leq i \leq t.$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(\overline{c}_{u,v} \lor \overline{r}_{u} \lor \overline{r}_{v} \lor \overline{o}_{u,2}^{>}) \land (\overline{c}_{u,v} \lor \overline{r}_{u} \lor \overline{r}_{v} \lor o_{v,1}^{>}) \land (\overline{c}_{u,v} \lor \overline{r}_{u} \lor \overline{r}_{v} \lor \overline{o}_{v,1}^{>} \lor o_{v,2}^{>}) \land$ $(\overline{c}_{u,w} \vee \overline{r}_{u} \vee \overline{r}_{w} \vee \overline{o}_{u,2}^{\succ}) \wedge (\overline{c}_{u,w} \vee \overline{r}_{u} \vee \overline{r}_{w} \vee o_{w,1}^{\succ}) \wedge (\overline{c}_{u,w} \vee \overline{r}_{u} \vee \overline{r}_{w} \vee \overline{o}_{u,1}^{\succ} \vee o_{w,2}^{\succ}) \wedge$ $(\overline{c}_{u,x} \vee \overline{r}_{u} \vee \overline{r}_{x} \vee \overline{o}_{u,2}^{\succ}) \wedge (\overline{c}_{u,x} \vee \overline{r}_{u} \vee \overline{r}_{x} \vee o_{x,1}^{\succ}) \wedge (\overline{c}_{u,x} \vee \overline{r}_{u} \vee \overline{r}_{x} \vee \overline{o}_{u,1}^{\succ} \vee o_{x,2}^{\succ}) \wedge$ $(\overline{c}_{V,W} \lor \overline{r}_{V} \lor \overline{r}_{W} \lor \overline{o}_{V,2}^{>}) \land (\overline{c}_{V,W} \lor \overline{r}_{V} \lor \overline{r}_{W} \lor \overline{o}_{W,1}^{>}) \land (\overline{c}_{V,W} \lor \overline{r}_{V} \lor \overline{r}_{W} \lor \overline{o}_{V,1}^{>} \lor \overline{o}_{W,2}^{>}) \land$ $(\overline{c}_{V,X} \vee \overline{r}_{V} \vee \overline{r}_{X} \vee \overline{o}_{V,2}^{\geq}) \wedge (\overline{c}_{V,X} \vee \overline{r}_{V} \vee \overline{r}_{X} \vee o_{v,1}^{\geq}) \wedge (\overline{c}_{V,X} \vee \overline{r}_{V} \vee \overline{r}_{X} \vee \overline{o}_{v,1}^{\geq} \vee o_{v,2}^{\geq}) \wedge$ $(\overline{c}_{w,x} \vee \overline{r}_{w} \vee \overline{r}_{x} \vee \overline{o}_{w,2}^{>}) \wedge (\overline{c}_{w,x} \vee \overline{r}_{w} \vee \overline{r}_{x} \vee o_{x,1}^{>}) \wedge (\overline{c}_{w,x} \vee \overline{r}_{w} \vee \overline{r}_{x} \vee \overline{o}_{w,1}^{>} \vee o_{x,2}^{>})$ Consider the assignment $c_{u,v} = c_{u,w} = c_{u,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $r_{\mu} = r_{\nu} = r_{w} = r_{x} = 1$. Unit propagation results in a conflict!

イロト 不得 とくほ とくほ とうしょう

Combining representative and order variables with u < v:

$$(\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,k-1,i}^{>}) \wedge (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee o_{v,1,i}^{>}) \wedge \\ \bigwedge_{1 \leq a < k-1} (\bar{c}_{u,v,i} \vee \bar{r}_{u,i} \vee \bar{r}_{v,i} \vee \bar{o}_{u,a,i}^{>} \vee o_{v,a+1,i}^{>}) \quad \text{for } u, v \in V, \ 0 \leq i \leq t.$$

Example: four vertices $u, v, w, x \in V$ and k = 3 (no *i* for readability) $(\overline{c}_{u,v} \lor \overline{r}_{u} \lor \overline{r}_{v} \lor \overline{o}_{u,2}^{>}) \land (\overline{c}_{u,v} \lor \overline{r}_{u} \lor \overline{r}_{v} \lor o_{v,1}^{>}) \land (\overline{c}_{u,v} \lor \overline{r}_{u} \lor \overline{r}_{v} \lor \overline{o}_{v,1}^{>}) \land$ $(\overline{c}_{u,w} \lor \overline{r}_{u} \lor \overline{r}_{w} \lor \overline{o}_{u,2}^{>}) \land (\overline{c}_{u,w} \lor \overline{r}_{u} \lor \overline{r}_{w} \lor \overline{o}_{u,1}^{>}) \land (\overline{c}_{u,w} \lor \overline{r}_{u} \lor \overline{r}_{w} \lor \overline{o}_{u,1}^{>} \lor \overline{o}_{u,2}^{>}) \land$ $(\overline{c}_{u,x} \vee \overline{r}_{u} \vee \overline{r}_{x} \vee \overline{o}_{u,2}^{>}) \wedge (\overline{c}_{u,x} \vee \overline{r}_{u} \vee \overline{r}_{x} \vee o_{x,1}^{>}) \wedge (\overline{c}_{u,x} \vee \overline{r}_{u} \vee \overline{r}_{x} \vee \overline{o}_{u,1}^{>} \vee o_{x,2}^{>}) \wedge$ $(\bar{c}_{v,w} \vee \bar{r}_v \vee \bar{r}_w \vee \bar{o}_{v,2}^{>}) \wedge (\bar{c}_{v,w} \vee \bar{r}_v \vee \bar{r}_w \vee o_{w,1}^{>}) \wedge (\bar{c}_{v,w} \vee \bar{r}_v \vee \bar{r}_w \vee \bar{o}_{v,1}^{>} \vee o_{w,2}^{>}) \wedge$ $(\overline{c}_{v,x} \lor \overline{r}_{v} \lor \overline{r}_{x} \lor \overline{o}_{v,2}^{>}) \land (\overline{c}_{v,x} \lor \overline{r}_{v} \lor \overline{r}_{x} \lor o_{v,1}^{>}) \land (\overline{c}_{v,x} \lor \overline{r}_{v} \lor \overline{r}_{x} \lor \overline{o}_{v,1}^{>} \lor o_{v,2}^{>}) \land$ $(\bar{c}_{w,x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w,2}^{>}) \wedge (\bar{c}_{w,x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee o_{x,1}^{>}) \wedge (\bar{c}_{w,x} \vee \bar{r}_{w} \vee \bar{r}_{x} \vee \bar{o}_{w,1}^{>} \vee o_{x,2}^{>})$ Consider the assignment $c_{u,v} = c_{u,w} = c_{u,x} = c_{v,w} = c_{v,x} = c_{w,x} = 1$ and $r_u = r_v = r_w = r_x = 1$. Unit propagation results in a conflict!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Results

Marijn Heule and Stefan Szeider

A SAT Approach to Clique-Width

< E July 12, 2013 @ SAT

.⊒ . ►

< ⊡ >

17 / 24

æ

Results overview

For all experiments we used the Glucose 2.2 solver. All formulas were generated using the representative encoding of k-derivations.

k	6	7	8	9	10	11	12	13	14
direct	638.5	18,337	то	ТО	ТО	ТО	30.57	0.67	0.50
repres	12.14	33.94	102.3	358.6	9.21	0.40	0.35	0.32	0.29

To determine the clique-width of a graph G = (V, E), we initialized k = |V| and decreased k until the corresponding formula was unsatisfiable.

Three types of graphs:

- Random graphs with different edge probabilities
- All prime graphs with 10 vertices or less
- Famous graphs

4 B 6 4 B

Results overview

For all experiments we used the Glucose 2.2 solver. All formulas were generated using the representative encoding of k-derivations.

k	6	7	8	9	10	11	12	13	14
direct	638.5	18,337	то	ТО	ТО	ТО	30.57	0.67	0.50
repres	12.14	33.94	102.3	358.6	9.21	0.40	0.35	0.32	0.29

To determine the clique-width of a graph G = (V, E), we initialized k = |V| and decreased k until the corresponding formula was unsatisfiable.

Three types of graphs:

- Random graphs with different edge probabilities
- All prime graphs with 10 vertices or less
- Famous graphs

Random Graphs

Clique-Width Numbers

			clique-width								
V	connected	prime	2	3	4	5	6				
4	6	1	0	1	0	0	0				
5	21	4	0	4	0	0	0				
6	112	26	0	25	1	0	0				
7	853	260	0	210	50	0	0				
8	11,117	4,670	0	1,873	2,790	7	0				
9	261,080	145,870	0	16,348	125,364	4,158	0				
10	11,716,571	8,110,354	0	142,745	5,520,350	2,447,190	68				

Proposition

The clique-width sequence starts with the numbers 1, 2, 4, 6, 8, 10, 11.

э

Smallest Graphs with Clique-Width 3, 4, 5, and 6

Famous Graphs

graph	V	E	cwd	variables	clauses	UNSAT	SAT
Brinkmann	21	42	10	8,526	163,065	3,933	1.79
Clebsch	16	40	8	3,872	60,520	191	0.09
Desargues	20	30	8	7,800	141,410	3,163	0.26
Dodecahedron	20	30	8	7,800	141,410	5,310	0.33
Errera	17	45	8	4,692	79,311	82	0.16
Flower snark	20	30	7	8,000	148,620	276	3.90
Folkman	20	40	5	8,280	168,190	12	0.36
Kittell	23	63	8	12,006	281,310	179	18.65
McGee	24	36	8	13,680	303,660	8,700	59.89
Paley-13	13	39	9	1,820	22,776	13	0.05
Paley-17	17	68	11	3,978	72,896	194	0.12
Pappus	18	27	8	5,616	90,315	983	0.14
Robertson	19	38	9	6,422	112,461	478	0.76

- 3

Conclusions

Encoded the clique-with problem into SAT

- Conventional formulation is not suitable for encoding
- Reformulation based on derivations enables parallel operations
- Representative encoding is much more efficient than direct encoding

Results

- Discovered the smallest graphs with clique-width 4, 5, and 6
- Observed the influence of the edge-probability on the clique-width
- Determined the clique-width of several famous graphs

Future work

- Evaluate the effectiveness of heuristics for clique-width
- Use the results for theoretical investigations
- Approximating clique-width by limiting the number of steps

A SAT Approach to Clique-Width

Marijn Heule and Stefan Szeider

The University of Texas at Austin, Vienna University of Technology

July 12, 2013 @ SAT