Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

# Exponential Separations in a Hierarchy of Clause Learning Proof Systems

Jan Johannsen

Institut für Informatik LMU München

SAT 2013, Helsinki

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clause:

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

#### ・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

disjunction  $a_1 \vee \ldots \vee a_k$  of literals  $a_i = x$  or  $a_i = \bar{x}$ .

Clause: disjunction  $a_1 \vee \ldots \vee a_k$  of literals  $a_i = x$  or  $a_i = \bar{x}$ .

The width of C is w(C) := k.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Clause: disjunction  $a_1 \vee \ldots \vee a_k$  of literals  $a_i = x$  or  $a_i = \bar{x}$ .

The width of C is w(C) := k.

Formula (in CNF): conjunction  $C_1 \land \ldots \land C_m$  of clauses.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Clause: disjunction  $a_1 \vee \ldots \vee a_k$  of literals  $a_i = x$  or  $a_i = \bar{x}$ .

The width of C is w(C) := k.

Formula (in CNF): conjunction  $C_1 \land \ldots \land C_m$  of clauses.

Resolution rule If C, D are clauses with  $x \in C$  and  $\bar{x} \in D$ , then

 $\textit{Res}_x(C,D) := (C \setminus x) \lor (D \setminus \bar{x})$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Definition A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t. Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

#### Definition

A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t.

there is exactly one sink labelled C

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

#### Definition

A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t.

- there is exactly one sink labelled C
- If v has predecessors u and u', then

$$C_v = \operatorname{Res}_x(C_u, C_{u'})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for some variable x

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

#### Definition

A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t.

- there is exactly one sink labelled C
- If v has predecessors u and u', then

 $C_v = \operatorname{Res}_x(C_u, C_{u'})$ 

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

for some variable x

• if v is a source, then  $C_v \in F$ 

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

### Definition

A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t.

- there is exactly one sink labelled C
- If v has predecessors u and u', then

 $C_v = \operatorname{Res}_x(C_u, C_{u'})$ 

for some variable x

• if v is a source, then  $C_v \in F$ 

If the dag is a tree, we call R tree-like

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

### Definition

A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t.

- there is exactly one sink labelled C
- If v has predecessors u and u', then

 $C_v = \operatorname{Res}_x(C_u, C_{u'})$ 

for some variable x

• if v is a source, then  $C_v \in F$ 

If the dag is a tree, we call R tree-like

A Resolution refutation of F is a derivation of the empty clause  $\Box$  from F.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

### DPLL and Tree Resolution

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

Theorem If unsatisfiable formula F is refuted by DPLL in s steps, then F has a tree-like resolution refutation R of size s.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

### DPLL and Tree Resolution

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

Theorem If unsatisfiable formula F is refuted by DPLL in s steps, then F has a tree-like resolution refutation R of size s.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

The converse also holds.

### DPLL and Tree Resolution

Theorem If unsatisfiable formula F is refuted by DPLL in s steps, then F has a tree-like resolution refutation R of size s.

The converse also holds.

Wanted: Similar correspondence for DPLL with clause learning.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.



Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

•  $C_{\rm root} = \Box$ 

• if v has children u and u', then

 $C_v = Res_x(C_u, C_{u'})$  for some variable x

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

•  $C_{\rm root} = \Box$ 

if v has children u and u', then
 C<sub>v</sub> = Res<sub>x</sub>(C<sub>u</sub>, C<sub>u'</sub>) for some variable x

▶ if v is a leaf, then

$$C_v \in F$$

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

•  $C_{\rm root} = \Box$ 

• if v has children u and u', then  $C_v = Res_x(C_u, C_{u'})$  for some variable x

▶ if v is a leaf, then

$$C_v \in F$$
 or  $C_v = C_u$  for some  $u \prec v$  (lemma)

 $\prec$  is the post-order on trees.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

#### Theorem (Buss, Hoffmann, JJ 08)

#### If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$ .

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

#### Theorem (Buss, Hoffmann, JJ 08)

If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size  $s \cdot n^{O(1)}$ .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Moreover, the lemmas used in R are among the clauses learned by the algorithm.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

#### Theorem (Buss, Hoffmann, JJ 08)

If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size  $s \cdot n^{O(1)}$ .

Moreover, the lemmas used in R are among the clauses learned by the algorithm.

In fact, the paper defines a subsystem WRTI < RTL for which also the converse holds.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

#### Theorem (Buss, Hoffmann, JJ 08)

If unsatisfiable formula F is refuted by DPLL+CL in s steps, then F has an RTL-refutation R of size  $s \cdot n^{O(1)}$ .

Moreover, the lemmas used in R are among the clauses learned by the algorithm.

In fact, the paper defines a subsystem WRTI < RTL for which also the converse holds.

A refutation R in RTL is in RTL(k), if every lemma C used in R is of width  $w(C) \le k$ .

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Theorem (BHJ 08)

Every RTL(n/2)-refutation of  $PHP_n$  is of size  $2^{\Omega(n \log n)}$ .

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Theorem (BHJ 08) Every RTL(n/2)-refutation of  $PHP_n$  is of size  $2^{\Omega(n \log n)}$ .

Theorem (JJ 09) Every RTL(n/4)-refutation of  $Ord_n$  is of size  $2^{\Omega(n)}$ . Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (BHJ 08) Every RTL(n/2)-refutation of  $PHP_n$  is of size  $2^{\Omega(n \log n)}$ .

Theorem (JJ 09) Every RTL(n/4)-refutation of  $Ord_n$  is of size  $2^{\Omega(n)}$ .

Theorem (Ben-Sasson, JJ 10) If resolution refutations of F require width w, then every RTL(k)-refutation of F is of size  $2^{w-2k}$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Theorem (BHJ 08) Every RTL(n/2)-refutation of  $PHP_n$  is of size  $2^{\Omega(n \log n)}$ .

Theorem (JJ 09) Every RTL(n/4)-refutation of  $Ord_n$  is of size  $2^{\Omega(n)}$ .

Theorem (Ben-Sasson, JJ 10) If resolution refutations of F require width w, then every RTL(k)-refutation of F is of size  $2^{w-2k}$ .

Here we show:

Theorem For every k, there are formulas  $F_n^{(k)}$  such that Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Theorem (BHJ 08) Every RTL(n/2)-refutation of  $PHP_n$  is of size  $2^{\Omega(n \log n)}$ .

Theorem (JJ 09) Every RTL(n/4)-refutation of  $Ord_n$  is of size  $2^{\Omega(n)}$ .

```
Theorem (Ben-Sasson, JJ 10)
If resolution refutations of F require width w,
then every RTL(k)-refutation of F is of size 2^{w-2k}.
```

Here we show:

Theorem

For every k, there are formulas  $F_n^{(k)}$  such that

•  $F_n^{(k)}$  have RTL(k+1)-refutations of size  $n^{O(1)}$ .

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Theorem (BHJ 08) Every RTL(n/2)-refutation of  $PHP_n$  is of size  $2^{\Omega(n \log n)}$ .

Theorem (JJ 09) Every RTL(n/4)-refutation of  $Ord_n$  is of size  $2^{\Omega(n)}$ .

```
Theorem (Ben-Sasson, JJ 10)
If resolution refutations of F require width w,
then every RTL(k)-refutation of F is of size 2^{w-2k}.
```

Here we show:

Theorem

For every k, there are formulas  $F_n^{(k)}$  such that

- $F_n^{(k)}$  have RTL(k+1)-refutations of size  $n^{O(1)}$ .
- $F_n^{(k)}$  requires RTL(k)-refutations of size  $2^{\Omega(n/\log n)}$ .

Clause learning proof systems

Jan Johannsen

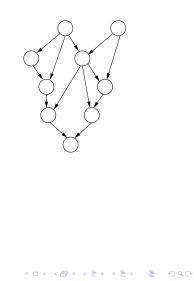
Resolution Trees with Lemmas

#### Pointed DAG: G with in-degree 2 and one sink t.

Clause learning proof systems

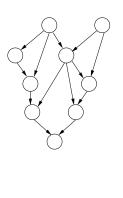
Jan Johannsen

Resolution Trees vith Lemmas



Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on *G*:



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Clause learning proof systems

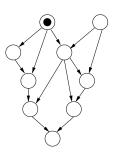
Jan Johannsen

Resolution Trees with Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on *G*:

put pebble on any source



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clause learning proof systems

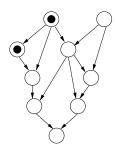
Jan Johannsen

Resolution Trees with Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

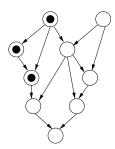
Jan Johannsen

Resolution Trees vith Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

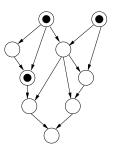
Jan Johannsen

Resolution Trees vith Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

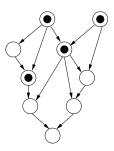
Jan Johannsen

Resolution Trees with Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

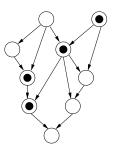
Jan Johannsen

Resolution Trees vith Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

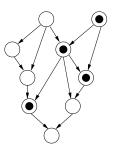
Jan Johannsen

Resolution Trees vith Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

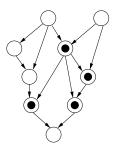
Jan Johannsen

Resolution Trees with Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

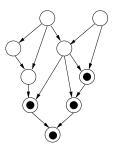
Jan Johannsen

Resolution Trees with Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble until a pebble is put on t.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

Jan Johannsen

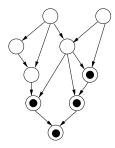
Resolution Trees vith Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble
   until a pebble is put on t.

Pebbling number Peb(G): min. # of pebbles in game on G.



Clause learning proof systems

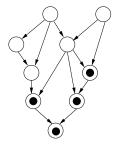
Jan Johannsen

Resolution Trees vith Lemmas

Pointed DAG: G with in-degree 2 and one sink t.

#### Pebble game on G:

- put pebble on any source
- put pebble on any vertex where both predecessors have a pebble
- remove any pebble
   until a pebble is put on t.



Pebbling number Peb(G): min. # of pebbles in game on G.

Theorem (Celoni, Paul, Tarjan 1977) There are dags  $G_n$  of size n with  $Peb(G_n) \ge \Omega(n/\log n)$ . Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

## Pebbling formulas

#### Clauses Imp(G):

X<sub>V</sub>

 $x_u \wedge x_{u'} \to x_v$  $\bar{x}_t$  for every source vfor  $(u, v), (u', v) \in E$ for the sink t

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

# Pebbling formulas

#### Clauses Imp(G):

 $\begin{array}{ll} x_{v} & \text{for every source } v \\ x_{u} \wedge x_{u'} \rightarrow x_{v} & \text{for } (u,v), (u',v) \in E \\ \bar{x}_{t} & \text{for the sink } t \end{array}$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

#### $Imp^{2}(G)$ : replace every $x_{v}$ in Imp(G) by $x_{v,1} \lor x_{v,2}$

Clause learning proof systems

Jan Johannsen

Resolution Trees vith Lemmas

# Pebbling formulas

#### Clauses Imp(G):

 $\begin{array}{ll} x_v & \text{for every source } v \\ x_u \wedge x_{u'} \to x_v & \text{for } (u,v), (u',v) \in E \\ \bar{x}_t & \text{for the sink } t \end{array}$ 

 $Imp^{2}(G)$ : replace every  $x_{v}$  in Imp(G) by  $x_{v,1} \lor x_{v,2}$ 

Theorem (Ben-Sasson et al. 2004) Every tree resolution refutation of  $Imp^{2}(G)$ is of size  $2^{\Omega(Peb(G))}$ . Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

• 
$$X(x,k) = x_1 \oplus \ldots \oplus x_k$$
 for a variable x.

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

・ロト ・ 日 ・ モ ・ ・ モ ・ う へ の・

$$\blacktriangleright X(x,k) = x_1 \oplus \ldots \oplus x_k$$

 $\blacktriangleright X(\bar{x},k) = X(x,k) \oplus 1$ 

for a variable x. for a negated variable  $\bar{x}$ . Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

#### 

$$\blacktriangleright X(x,k) = x_1 \oplus \ldots \oplus x_k$$

$$\blacktriangleright X(\bar{x},k) = X(x,k) \oplus 1$$

$$\blacktriangleright X(C,k) = \bigvee_{a \in C} X(a,k)$$

for a variable x. for a negated variable  $\bar{x}$ . expanded into CNF, for a clause C. Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

#### ◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

$$\bullet X(x,k) = x_1 \oplus \ldots \oplus x_k$$

$$\blacktriangleright X(\bar{x},k) = X(x,k) \oplus 1$$

$$\blacktriangleright X(C,k) = \bigvee_{a \in C} X(a,k)$$

$$\blacktriangleright X(F,k) = \bigwedge_{C \in F} X(C,k)$$

for a variable x. for a negated variable  $\bar{x}$ . expanded into CNF, for a clause C. for a CNF formula F.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

$$\bullet X(x,k) = x_1 \oplus \ldots \oplus x_k$$

$$\blacktriangleright X(\bar{x},k) = X(x,k) \oplus 1$$

$$\blacktriangleright X(C,k) = \bigvee_{a \in C} X(a,k)$$

• 
$$X(F,k) = \bigwedge_{C \in F} X(C,k)$$

for a variable x. for a negated variable  $\bar{x}$ . expanded into CNF, for a clause C. for a CNF formula F.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

We write  $Imp^{\oplus k}(G)$  for X(Imp(G), k).

$$\bullet X(x,k) = x_1 \oplus \ldots \oplus x_k$$

$$\blacktriangleright X(\bar{x},k) = X(x,k) \oplus 1$$

$$\blacktriangleright X(C,k) = \bigvee_{a \in C} X(a,k)$$

$$\blacktriangleright X(F,k) = \bigwedge_{C \in F} X(C,k)$$

for a variable x. for a negated variable  $\bar{x}$ . expanded into CNF, for a clause C. for a CNF formula F.

# Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

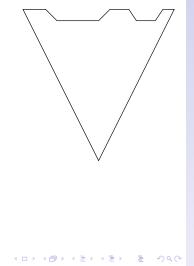
We write  $Imp^{\oplus k}(G)$  for X(Imp(G), k).

Theorem For every G of size n,  $Imp^{\oplus k}(G)$  has RTL(k)-refutations of size  $O(2^{3k}n)$ .

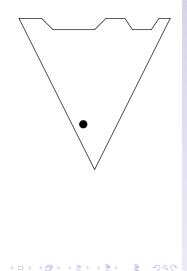
Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G) Clause learning proof systems

Jan Johannsen

Resolution Trees vith Lemmas



- ► Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G)
- Find first C with  $w(C) \leq k$

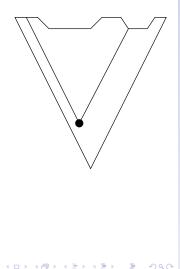


Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

- Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G)
- Find first C with  $w(C) \leq k$
- Subtree R<sub>C</sub> is tree-like derivation of C



Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

- ► Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G)
- Find first C with  $w(C) \leq k$
- Subtree R<sub>C</sub> is tree-like derivation of C
- Pick  $\rho$  with  $C \lceil \rho = 0$



Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

- Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G)
- Find first C with  $w(C) \leq k$
- Subtree R<sub>C</sub> is tree-like derivation of C
- Pick  $\rho$  with  $C \lceil \rho = 0$
- *R<sub>C</sub>* [ρ is refutation of *Imp*<sup>⊕(k+1)</sup>(G)[ρ



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Let  $\beta: V \to \{0,1\}^2$ , with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

Clause learning proof systems

Jan Johannsen

Resolution Trees vith Lemmas

Pebbling formulas

Let  $\beta: V \to \{0,1\}^2$ , with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

►  $X(x, k, \beta) = x_1 \oplus \ldots \oplus x_k \oplus \beta_1(x)$  for a variable xwith  $\beta_0(x) = 0$ . Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

#### ◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ● ●

Let 
$$\beta: V \to \{0,1\}^2$$
, with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

$$X(x,k,\beta) = x_1 \oplus \ldots \oplus x_k \oplus \beta_1(x)$$

$$\bullet X(x,k,\beta) = x_1 \oplus \beta_1(x)$$

for a variable xwith  $\beta_0(x) = 0$ .

for a variable x with  $\beta_0(x) = 1$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Let 
$$\beta: V \to \{0, 1\}^2$$
, with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

$$\blacktriangleright X(x,k,\beta) = x_1 \oplus \ldots \oplus x_k \oplus \beta_1(x)$$

$$\bullet X(x,k,\beta) = x_1 \oplus \beta_1(x)$$

• 
$$X(\bar{x},k,\beta) = X(x,k,\beta) \oplus 1$$

for a variable xwith  $\beta_0(x) = 0$ .

for a variable xwith  $\beta_0(x) = 1$ .

for a neg. variable  $\bar{x}$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Let 
$$\beta: V \to \{0, 1\}^2$$
, with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

• 
$$X(x,k,\beta) = x_1 \oplus \ldots \oplus x_k \oplus \beta_1(x)$$
 f

$$\bullet X(x,k,\beta) = x_1 \oplus \beta_1(x)$$

$$\blacktriangleright X(\bar{x},k,\beta) = X(x,k,\beta) \oplus 1$$

$$\blacktriangleright X(C,k,\beta) = \bigvee_{a \in C} X(a,k,\beta)$$

for a variable xwith  $\beta_0(x) = 0$ .

for a variable x with  $\beta_0(x) = 1$ .

for a neg. variable  $\bar{x}$ .

expanded into CNF, for a clause C

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

#### ・ロト ・ 通 ト ・ 画 ト ・ 画 ・ 今 の ぐ

Let 
$$\beta: V \to \{0,1\}^2$$
, with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

$$\blacktriangleright X(x,k,\beta) = x_1 \oplus \ldots \oplus x_k \oplus \beta_1(x) \qquad \text{f}$$

$$X(x,k,\beta) = x_1 \oplus \beta_1(x)$$

$$\blacktriangleright X(\bar{x},k,\beta) = X(x,k,\beta) \oplus 1$$

$$\blacktriangleright X(C,k,\beta) = \bigvee_{a \in C} X(a,k,\beta)$$

$$X(F,k,\beta) = \bigwedge_{C \in F} X(C,k,\beta)$$

for a variable xwith  $\beta_0(x) = 0$ .

for a variable x with  $\beta_0(x) = 1$ .

for a neg. variable  $\bar{x}$ .

expanded into CNF, for a clause *C* 

for a CNF formula F

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Let 
$$\beta: V \to \{0, 1\}^2$$
, with  $\beta(x) = (\beta_0(x), \beta_1(x))$ .

• 
$$X(x,k,\beta) = x_1 \oplus \ldots \oplus x_k \oplus \beta_1(x)$$
 for

$$X(x,k,\beta) = x_1 \oplus \beta_1(x)$$

$$\blacktriangleright X(\bar{x},k,\beta) = X(x,k,\beta) \oplus 1$$

$$\blacktriangleright X(C,k,\beta) = \bigvee_{a \in C} X(a,k,\beta)$$

$$\blacktriangleright X(F,k,\beta) = \bigwedge_{C \in F} X(C,k,\beta)$$

for a variable xwith  $\beta_0(x) = 0$ .

for a variable x with  $\beta_0(x) = 1$ .

for a neg. variable  $\bar{x}$ .

expanded into CNF, for a clause *C* 

for a CNF formula F

We write  $Imp_{\beta}^{\oplus k}(G)$  for  $X(Imp(G), k, \beta)$ 

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

- Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G)
- Find first C with  $w(C) \leq k$
- Subtree R<sub>C</sub> is tree-like derivation of C
- Pick  $\rho$  with  $C \lceil \rho = 0$
- $R_C \lceil \rho \text{ is refutation of } Imp^{\oplus (k+1)}(G) \rceil \rho$
- $Imp^{\oplus (k+1)}(G) \lceil \rho = Imp_{\beta}^{\oplus 2}(G)$



▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

#### Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Generalization of the lower bound by Ben-Sasson et al.:

#### Theorem

Every tree resolution refutation of  $Imp_{\beta}^{\oplus 2}(G)$ is of size  $2^{\Omega(\text{Peb}(G)-a(\beta))}$ , where  $a(\beta) := \#\{v; \beta_0(x_v) = 1\}$  Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ► Let R be a refutation of Imp<sup>⊕(k+1)</sup>(G)
- Find first C with  $w(C) \leq k$
- Subtree R<sub>C</sub> is tree-like derivation of C
- Pick  $\rho$  with  $C \lceil \rho = 0$
- *R<sub>C</sub>* [ρ is refutation of *Imp*<sup>⊕(k+1)</sup>(G)[ρ
- $Imp^{\oplus (k+1)}(G) \lceil \rho = Imp_{\beta}^{\oplus 2}(G)$ for a  $\beta$  with  $a(\beta) \leq 1$
- lower bound shows  $|R| \ge |R_C| \ge 2^{\Omega(\operatorname{Peb}(G))}$



Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalization of the lower bound by Ben-Sasson et al.:

#### Theorem

Every tree resolution refutation of  $Imp_{\beta}^{\oplus 2}(G)$ is of size  $2^{\Omega(\operatorname{Peb}(G)-a(\beta))}$ , where  $a(\beta) := \#\{v; \beta_0(x_v) = 1\}$ 

Theorem For every k, the formulas  $Imp^{\oplus (k+1)}(G_n)$ 

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas

Pebbling formulas

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Generalization of the lower bound by Ben-Sasson et al.:

#### Theorem

Every tree resolution refutation of  $Imp_{\beta}^{\oplus 2}(G)$ is of size  $2^{\Omega(\operatorname{Peb}(G)-a(\beta))}$ , where  $a(\beta) := \#\{v; \beta_0(x_v) = 1\}$ 

#### Theorem

For every k, the formulas  $Imp^{\oplus (k+1)}(G_n)$ 

• have RTL(k+1)-refutations of size  $n^{O(1)}$ .

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Clause learning proof systems

Jan Johannsen

Resolution Trees vith Lemmas

Generalization of the lower bound by Ben-Sasson et al.:

#### Theorem

Every tree resolution refutation of  $Imp_{\beta}^{\oplus 2}(G)$ is of size  $2^{\Omega(\operatorname{Peb}(G)-a(\beta))}$ , where  $a(\beta) := \#\{v; \beta_0(x_v) = 1\}$ 

#### Theorem

For every k, the formulas  $Imp^{\oplus (k+1)}(G_n)$ 

- have RTL(k + 1)-refutations of size  $n^{O(1)}$ .
- require RTL(k)-refutations of size  $2^{\Omega(n/\log n)}$ .

Clause learning proof systems

Jan Johannsen

Resolution Trees with Lemmas