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Resolution

Clause: disjunction a1 ∨ . . .∨ ak of literals ai = x or ai = x̄ .

The width of C is w(C ) := k .

Formula (in CNF): conjunction C1 ∧ . . . ∧ Cm of clauses.

Resolution rule
If C ,D are clauses with x ∈ C and x̄ ∈ D, then

Resx(C ,D) := (C \ x) ∨ (D \ x̄)



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution

Clause: disjunction a1 ∨ . . .∨ ak of literals ai = x or ai = x̄ .

The width of C is w(C ) := k .

Formula (in CNF): conjunction C1 ∧ . . . ∧ Cm of clauses.

Resolution rule
If C ,D are clauses with x ∈ C and x̄ ∈ D, then

Resx(C ,D) := (C \ x) ∨ (D \ x̄)



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution

Clause: disjunction a1 ∨ . . .∨ ak of literals ai = x or ai = x̄ .

The width of C is w(C ) := k .

Formula (in CNF): conjunction C1 ∧ . . . ∧ Cm of clauses.

Resolution rule
If C ,D are clauses with x ∈ C and x̄ ∈ D, then

Resx(C ,D) := (C \ x) ∨ (D \ x̄)



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution

Clause: disjunction a1 ∨ . . .∨ ak of literals ai = x or ai = x̄ .

The width of C is w(C ) := k .

Formula (in CNF): conjunction C1 ∧ . . . ∧ Cm of clauses.

Resolution rule
If C ,D are clauses with x ∈ C and x̄ ∈ D, then

Resx(C ,D) := (C \ x) ∨ (D \ x̄)



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution proofs

Definition
A Resolution derivation R of clause C from formula F
is a dag labelled with clauses s.t.

I there is exactly one sink labelled C

I If v has predecessors u and u′, then

Cv = Resx(Cu,Cu′)

for some variable x

I if v is a source, then Cv ∈ F

If the dag is a tree, we call R tree-like

A Resolution refutation of F is a derivation
of the empty clause 2 from F .
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DPLL and Tree Resolution

Theorem
If unsatisfiable formula F is refuted by DPLL in s steps,

then F has a tree-like resolution refutation R of size s.

The converse also holds.

Wanted: Similar correspondence for

DPLL with clause learning.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

DPLL and Tree Resolution

Theorem
If unsatisfiable formula F is refuted by DPLL in s steps,

then F has a tree-like resolution refutation R of size s.

The converse also holds.

Wanted: Similar correspondence for

DPLL with clause learning.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

DPLL and Tree Resolution

Theorem
If unsatisfiable formula F is refuted by DPLL in s steps,

then F has a tree-like resolution refutation R of size s.

The converse also holds.

Wanted: Similar correspondence for

DPLL with clause learning.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

I Croot = 2

I if v has children u and u′, then

Cv = Resx(Cu,Cu′) for some variable x

I if v is a leaf, then

Cv ∈ F

or Cv = Cu for some u ≺ v (lemma)

≺ is the post-order on trees.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

I Croot = 2

I if v has children u and u′, then

Cv = Resx(Cu,Cu′) for some variable x

I if v is a leaf, then

Cv ∈ F

or Cv = Cu for some u ≺ v (lemma)

≺ is the post-order on trees.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

I Croot = 2

I if v has children u and u′, then

Cv = Resx(Cu,Cu′) for some variable x

I if v is a leaf, then

Cv ∈ F

or Cv = Cu for some u ≺ v (lemma)

≺ is the post-order on trees.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

I Croot = 2

I if v has children u and u′, then

Cv = Resx(Cu,Cu′) for some variable x

I if v is a leaf, then

Cv ∈ F

or Cv = Cu for some u ≺ v (lemma)

≺ is the post-order on trees.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

I Croot = 2

I if v has children u and u′, then

Cv = Resx(Cu,Cu′) for some variable x

I if v is a leaf, then

Cv ∈ F or Cv = Cu for some u ≺ v (lemma)

≺ is the post-order on trees.



Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas

Pebbling formulas

Clause learning and RTL

Theorem (Buss, Hoffmann, JJ 08)

If unsatisfiable formula F is refuted by DPLL+CL in s steps,

then F has an RTL-refutation R of size s · nO(1).

Moreover, the lemmas used in R are among the clauses
learned by the algorithm.

In fact, the paper defines a subsystem WRTI < RTL
for which also the converse holds.

A refutation R in RTL is in RTL(k), if every lemma C
used in R is of width w(C ) ≤ k .
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Previous lower bounds

Theorem (BHJ 08)

Every RTL(n/2)-refutation of PHPn is of size 2Ω(n log n).

Theorem (JJ 09)

Every RTL(n/4)-refutation of Ordn is of size 2Ω(n).

Theorem (Ben-Sasson, JJ 10)

If resolution refutations of F require width w,
then every RTL(k)-refutation of F is of size 2w−2k .

Here we show:

Theorem
For every k, there are formulas F

(k)
n such that

I F
(k)
n have RTL(k + 1)-refutations of size nO(1).

I F
(k)
n requires RTL(k)-refutations of size 2Ω(n/ log n).
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Graph Pebbling

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G :

I put pebble on any source

I put pebble on any vertex
where both predecessors
have a pebble

I remove any pebble

until a pebble is put on t.

Pebbling number Peb(G ): min. # of pebbles in game on G .

Theorem (Celoni, Paul, Tarjan 1977)

There are dags Gn of size n with Peb(Gn) ≥ Ω(n/ log n).
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Pebbling formulas

Clauses Imp(G ):

xv for every source v

xu ∧ xu′ → xv for (u, v), (u′, v) ∈ E

x̄t for the sink t

Imp2(G ): replace every xv in Imp(G ) by xv ,1 ∨ xv ,2

Theorem (Ben-Sasson et al. 2004)

Every tree resolution refutation of Imp2(G )

is of size 2Ω(Peb(G)).
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XORification

I X (x , k) = x1 ⊕ . . .⊕ xk for a variable x .

I X (x̄ , k) = X (x , k)⊕ 1 for a negated variable x̄ .

I X (C , k) =
∨

a∈C X (a, k) expanded into CNF,
for a clause C .

I X (F , k) =
∧

C∈F X (C , k) for a CNF formula F .

We write Imp⊕k(G ) for X (Imp(G ), k).

Theorem
For every G of size n,

Imp⊕k(G ) has RTL(k)-refutations of size O(23kn).
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Proof of the lower bound

I Let R be a refutation of
Imp⊕(k+1)(G )

I Find first C with w(C ) ≤ k

I Subtree RC is tree-like
derivation of C

I Pick ρ with Cdρ = 0

I RCdρ is refutation of
Imp⊕(k+1)(G )dρ

I Imp⊕(k+1)(G )dρ = Imp⊕2
β (G )

for a β with a(β) ≤ 1

I lower bound shows
|R| ≥ |RC | ≥ 2Ω(Peb(G))
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Generalized XORification

Let β : V → {0, 1}2, with β(x) = (β0(x), β1(x)).

I X (x , k , β) = x1 ⊕ . . .⊕ xk ⊕ β1(x) for a variable x
with β0(x) = 0.

I X (x , k , β) = x1 ⊕ β1(x) for a variable x
with β0(x) = 1.

I X (x̄ , k , β) = X (x , k , β)⊕ 1 for a neg. variable x̄ .

I X (C , k, β) =
∨

a∈C X (a, k , β) expanded into CNF,
for a clause C

I X (F , k, β) =
∧

C∈F X (C , k , β) for a CNF formula F

We write Imp⊕kβ (G ) for X (Imp(G ), k , β)
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Lower bound

Generalization of the lower bound by Ben-Sasson et al.:

Theorem
Every tree resolution refutation of Imp⊕2

β (G )

is of size 2Ω(Peb(G)−a(β)),

where a(β) := #{ v ; β0(xv ) = 1 }

Theorem
For every k, the formulas Imp⊕(k+1)(Gn)

I have RTL(k + 1)-refutations of size nO(1).

I require RTL(k)-refutations of size 2Ω(n/ log n).
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