Experiments with Reduction Finding

Skip Jordan and Łukasz Kaiser
ERATO Group, JST \& Hokkaido University LIAFA, CNRS \& Université Paris Diderot

SAT 2013

The Magic of SAT

find x : " x is good"

The Magic of SAT

$$
\text { find } x \text { : " } x \text { is good" }
$$

Beyond SAT

find $f: \forall x$ " $f(x)$ is good"

The Magic of SAT

find x : " x is good"

Beyond SAT

$$
\text { find } f: \forall x \text { " } f(x) \text { is good" }
$$

Reduction Finding

$$
\text { find } r: \forall x(x \in P \leftrightarrow r(x) \in Q)
$$

The Magic of SAT

find x : " x is good"

Beyond SAT

$$
\text { find } f: \forall x \text { " } f(x) \text { is good" }
$$

Reduction Finding

$$
\text { find } r: \forall x(x \in P \leftrightarrow r(x) \in Q)
$$

Questions

- how do we represent r, P, Q, and x ?
- how do we approach the problem? (CEGAR vs QBF vs ASP)
- how do current tools perform?

How do we represent reductions?

Representing Reductions

reduction $r: \forall x(x \in P \leftrightarrow r(x) \in Q)$

Representing Reductions

$$
\text { reduction } r: \forall x(x \in P \leftrightarrow r(x) \in Q)
$$

Standard reductions

- r is a (ptime, logspace, ...) Turing machine
- x is a word
- P, Q are sets of words given by Turing machines

Representing Reductions

$$
\text { reduction } r: \forall x(x \in P \leftrightarrow r(x) \in Q)
$$

Standard reductions

- r is a (ptime, logspace, ...) Turing machine
- x is a word
- P, Q are sets of words given by Turing machines

Reductions in logic

- r is a (quantifier-free, first-order, ...) query
- x is a relational structure
- P, Q are sets of structures given by formulas

Representing Reductions

$$
\text { reduction } r: \forall x(x \in P \leftrightarrow r(x) \in Q)
$$

Standard reductions

- r is a (ptime, logspace, ...) Turing machine
- x is a word
- P, Q are sets of words given by Turing machines

Reductions in logic

- r is a (quantifier-free, first-order, ...) query
- x is a relational structure
- P, Q are sets of structures given by formulas

Question: is there a useful correspondence?

Relational Structures and Logics

Relational Structures $\mathfrak{A}=\left(A, \mathbf{R}_{1}^{\mathfrak{A}}, \mathbf{R}_{2}^{\mathfrak{A}}, \ldots, \mathbf{R}_{l}^{\mathfrak{A}}, \mathbf{C}_{1}^{\mathfrak{A}}, \ldots, \mathbf{C}_{m}^{\mathfrak{A}}\right)$

Relational Structures and Logics

Relational Structures $\mathfrak{A}=\left(A, \mathbf{R}_{1}^{\mathfrak{A}}, \mathbf{R}_{2}^{\mathfrak{A}}, \ldots, \mathbf{R}_{l}^{\mathfrak{A}}, \mathbf{C}_{1}^{\mathfrak{A}}, \ldots, \mathbf{C}_{m}^{\mathfrak{A}}\right)$

First-Order and Second-Order Logic over $\sigma=\{\mathbf{E}\}$
The graph is a clique (FO): $\quad \forall x, y(x=y \vee \mathrm{E}(x, y))$
The graph is 3-colourable ($\exists \mathrm{SO}$):

$$
\begin{aligned}
\exists R, G, & B(\forall x, y(R(x) \vee G(x) \vee B(x)) \wedge(E(x, y) \rightarrow \\
& \neg((R(x) \wedge R(y)) \vee(G(x) \wedge G(y)) \vee(B(x) \wedge B(y))))
\end{aligned}
$$

Descriptive Complexity

FO Interpretations (Queries) $\theta=\left(k, \varphi_{0}, \psi_{1}, \ldots, \psi_{m}\right)$

- k is the dimension
- $\varphi_{0}\left(x_{1}, \ldots, x_{k}\right)$ defines the new universe
- $\psi_{i}\left(x_{1}, \ldots, x_{k r_{i}}\right)$ define the new relations

Descriptive Complexity

FO Interpretations (Queries) $\theta=\left(k, \varphi_{0}, \psi_{1}, \ldots, \psi_{m}\right)$

- k is the dimension
- $\varphi_{0}\left(x_{1}, \ldots, x_{k}\right)$ defines the new universe
- $\psi_{i}\left(x_{1}, \ldots, x_{k r_{i}}\right)$ define the new relations

Example: $\left(k=2, \varphi_{0}=T, \psi_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\mathbf{E}\left(x_{1}, x_{2}\right) \wedge\left(y_{1}=y_{2} \vee y_{2}=s\right)\right)$

\leadsto

Descriptive Complexity

FO Interpretations (Queries) $\theta=\left(k, \varphi_{0}, \psi_{1}, \ldots, \psi_{m}\right)$

- k is the dimension
- $\varphi_{0}\left(x_{1}, \ldots, x_{k}\right)$ defines the new universe
- $\psi_{i}\left(x_{1}, \ldots, x_{k r_{i}}\right)$ define the new relations

Example: $\left(k=2, \varphi_{0}=T, \psi_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\mathbf{E}\left(x_{1}, x_{2}\right) \wedge\left(y_{1}=y_{2} \vee y_{2}=\boldsymbol{s}\right)\right)$

Complexity classes under interpretations (Immerman)

- quantifier-free reductions are weaker than ptime
- still P=NP iff SAT $\leq_{q f} C V P$
- and NL=NP iff SAT \leq_{q} REACH,
- and coNL=NL (true) iff \neg REACH $\leq_{\text {qf }} R E A C H$

How do we find reductions?

Existential SO using SAT Solvers

Transformation $\exists \mathrm{SO} \ni \varphi, \mathfrak{A} \leadsto \psi$ Boolean

$$
\begin{aligned}
\operatorname{Rel}\left(a_{1}, \ldots, a_{k}\right) & \leadsto T / \mathfrak{A} \perp \quad \operatorname{Var}\left(a_{1}, \ldots, a_{k}\right) \leadsto X_{V a r, a_{1}, \ldots, a_{k}} \\
\varphi_{1} \wedge \varphi_{2} \leadsto \hat{\varphi}_{1} \wedge \hat{\varphi}_{2} \quad \exists x \varphi \leadsto \bigvee_{a \in \mathfrak{A}} \hat{\varphi}(a) \quad \forall x \varphi & \leadsto \bigwedge_{a \in \mathfrak{A}} \hat{\varphi}(a)
\end{aligned}
$$

Existential SO using SAT Solvers

Transformation $\exists \mathrm{SO} \ni \varphi, \mathfrak{A} \leadsto \psi$ Boolean

$$
\begin{aligned}
\operatorname{Rel}\left(a_{1}, \ldots, a_{k}\right) \leadsto T / \mathfrak{A} \perp \quad \operatorname{Var}\left(a_{1}, \ldots, a_{k}\right) \leadsto X_{V a r, a_{1}, \ldots, a_{k}} \\
\varphi_{1} \wedge \varphi_{2} \leadsto \hat{\varphi}_{1} \wedge \hat{\varphi}_{2} \quad \exists x \varphi \leadsto \bigvee_{a \in \mathfrak{A}} \hat{\varphi}(a) \quad \forall x \varphi \leadsto \bigwedge_{a \in \mathfrak{A}} \hat{\varphi}(a)
\end{aligned}
$$

Model-Checking
(1) transform $\varphi, \mathfrak{A} \leadsto \psi$
(2) solve ψ (using a sat solver)
(3) decode \exists SO-variables from the answer

Existential SO using SAT Solvers

Transformation $\exists \mathrm{SO} \ni \varphi, \mathfrak{A} \leadsto \psi$ Boolean

$$
\begin{aligned}
& \operatorname{Rel}\left(a_{1}, \ldots, a_{k}\right) \leadsto \top / \mathfrak{A} \perp \quad \operatorname{Var}\left(a_{1}, \ldots, a_{k}\right) \leadsto X_{V a r, a_{1}, \ldots, a_{k}} \\
& \varphi_{1} \wedge \varphi_{2} \leadsto \hat{\varphi}_{1} \wedge \hat{\varphi}_{2} \quad \exists x \varphi \leadsto \bigvee_{a \in \mathfrak{A}} \hat{\varphi}(a) \quad \forall x \varphi \leadsto \bigwedge_{a \in \mathfrak{A}} \hat{\varphi}(a)
\end{aligned}
$$

Model-Checking
(1) transform $\varphi, \mathfrak{A} \leadsto \psi$
(2) solve ψ (using a sat solver)
(3) decode \exists SO-variables from the answer

Example: 3-colouring a graph

$$
\begin{aligned}
\exists R, G, B & (\forall x, y(R(x) \vee G(x) \vee B(x)) \wedge(\mathrm{E}(x, y) \rightarrow \\
& \neg((R(x) \wedge R(y)) \vee(G(x) \wedge G(y)) \vee(B(x) \wedge B(y))))
\end{aligned}
$$

Two Basic Applications

Example (and counter-example) finding

$$
\varphi \in \mathrm{FO}, n \in \mathbb{N} \quad \leadsto \quad \mathfrak{A}| | \mathfrak{A} \mid=n \text { and } \mathfrak{A} \vDash \varphi \quad(\text { or } \mathfrak{A} \vDash \neg \varphi)
$$

Using \exists SO: change all relations in φ to SO variables

Two Basic Applications

Example (and counter-example) finding

$$
\varphi \in \mathrm{FO}, n \in \mathbb{N} \leadsto \mathfrak{A}| | \mathfrak{A} \mid=n \text { and } \mathfrak{A} \vDash \varphi \quad(\text { or } \mathfrak{A} \vDash \neg \varphi)
$$

Using $\exists \mathrm{SO}$: change all relations in φ to SO variables

Formula finding

$$
\text { outline of } \varphi, \mathfrak{A} \quad \leadsto \quad \varphi \mid \mathfrak{A} \vDash \varphi
$$

Outline: formula with Boolean atom guards. Example:

$$
\begin{array}{llll}
X_{1} \mathrm{E}\left(x_{1}, x_{1}\right) & \wedge x_{2} \mathrm{E}\left(x_{1}, x_{2}\right) & \wedge x_{3} \mathrm{E}\left(x_{2}, x_{1}\right) & \wedge x_{4} \mathrm{E}\left(x_{2}, x_{2}\right) \\
x_{5} \neg \mathrm{E}\left(x_{1}, x_{1}\right) & \wedge & x_{6} \neg \mathrm{E}\left(x_{1}, x_{2}\right) & \wedge \\
x_{7} \neg \mathrm{E}\left(x_{2}, x_{1}\right) & \wedge x_{8} \neg \mathrm{E}\left(x_{2}, x_{2}\right)
\end{array}
$$

Automatic Reduction Finding

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Automatic Reduction Finding

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed
Finding reductions by CEGAR

- Find a l-DNF reduction θ_{i} good on counter-examples $\mathfrak{E}_{0}, \ldots, \mathfrak{E}_{i}$
- Find a counter-example \mathfrak{E}_{i+1} to θ_{i}, iterate

Automatic Reduction Finding

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed
Finding reductions by CEGAR

- Find a l-DNF reduction θ_{i} good on counter-examples $\mathfrak{E}_{0}, \ldots, \mathfrak{E}_{i}$
- Find a counter-example \mathfrak{E}_{i+1} to θ_{i}, iterate

Finding reductions by QBF or ASP

$$
\exists \theta \forall \mathfrak{A}\left(\mathfrak{A} \vDash \varphi_{P} \leftrightarrow \theta(\mathfrak{A}) \vDash \varphi_{Q}\right)
$$

(1) convert the above to a Boolean formula $\left(\Sigma_{2}^{p}\right) \quad$ (2) use a solver

Automatic Reduction Finding

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed
Finding reductions by CEGAR

- Find a l-DNF reduction θ_{i} good on counter-examples $\mathfrak{E}_{0}, \ldots, \mathfrak{E}_{i}$
- Find a counter-example \mathfrak{E}_{i+1} to θ_{i}, iterate

Finding reductions by QBF or ASP

$$
\exists \theta \forall \mathfrak{A}\left(\mathfrak{A} \vDash \varphi_{P} \leftrightarrow \theta(\mathfrak{A}) \vDash \varphi_{Q}\right)
$$

(1) convert the above to a Boolean formula $\left(\sum_{2}^{p}\right)$ (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

$$
\text { Reach }=\left[\mathrm{tc}_{x, y} \mathbf{E}(x, y)\right](. s, . t) \quad \mathrm{SC}:=\forall x, y\left(\mathrm{tc}_{x, y} \mathbf{E}(x, y)\right)
$$

Automatic Reduction Finding

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed
Finding reductions by CEGAR

- Find a l-DNF reduction θ_{i} good on counter-examples $\mathfrak{E}_{0}, \ldots, \mathfrak{E}_{i}$
- Find a counter-example \mathfrak{E}_{i+1} to θ_{i}, iterate

Finding reductions by QBF or ASP

$$
\exists \theta \forall \mathfrak{A}\left(\mathfrak{A} \vDash \varphi_{P} \leftrightarrow \theta(\mathfrak{A}) \vDash \varphi_{Q}\right)
$$

(1) convert the above to a Boolean formula (Σ_{2}^{p})
(2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

$$
\begin{aligned}
\text { Reach }= & {\left[\mathrm{tc}_{x, y} \mathrm{E}(x, y)\right](. s, . t) \quad \mathrm{SC}:=\forall x, y\left(\mathrm{tc}_{x, y} \mathrm{E}(x, y)\right) } \\
& \text { http://toss.sf.net/reduct.html }
\end{aligned}
$$

Automatic Reduction Finding

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed
Finding reductions by CEGAR

- Find a l-DNF reduction θ_{i} good on counter-examples $\mathfrak{E}_{0}, \ldots, \mathfrak{E}_{i}$
- Find a counter-example \mathfrak{E}_{i+1} to θ_{i}, iterate

Finding reductions by QBF or ASP

$$
\exists \theta \forall \mathfrak{A}\left(\mathfrak{A} \vDash \varphi_{P} \leftrightarrow \theta(\mathfrak{A}) \vDash \varphi_{Q}\right)
$$

(1) convert the above to a Boolean formula $\left(\sum_{2}^{p}\right)$ (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

$$
\begin{gathered}
\text { Reach }=\left[\mathrm{tc}_{x, y} \mathbf{E}(x, y)\right](. s, . t) \quad \mathrm{SC}:=\forall x, y\left(\mathrm{tc}_{x, y} \mathbf{E}(x, y)\right) \\
\left(k=1, \varphi_{0}=\mathrm{T}, \psi_{1}=x_{1}=\mathbf{s} \vee x_{2}=\mathbf{t} \vee \mathbf{E}\left(x_{2}, x_{1}\right)\right)
\end{gathered}
$$

How do current tools perform?

Reduction Finding Results

\# Unsolved cases out of $48 \times 48=2304$: CEGAR vs QBF vs ASP (claspD)

(c, n)	$(1,3)$	$(2,3)$	$(3,3)$	$(1,4)$	$(2,4)$	$(3,4)$
de-gms	0	0	10	0	5	103
de-cudd	0	116	537	0	186	722
rareqs	0	0	16	19	65	204
depqbf	0	142	547	16	297	711
qube	10	536	949	82	760	1082
cirqit	58	673	1138	511	1092	1357
cirqit'	157	523	903	-	-	-
skizzo	522	1058	1156	975	1327	1434
gringo	40	393	590	72	593	836
lparse	51	396	605	75	635	850
RedFind	1	152	396	2	347	547

CEGAR Results

Performance on \neg REACH to REACH, $k=1$, scaling n (left) and c (right)

CEGAR Results

Performance on \neg REACH to REACH, $k=1$, scaling n (left) and c (right)

Increasing dimension to $k=2$

	de-ms	de-gms	de-cms	de-cudd	rareqs
$k=1, c=1, n=3$	0.05	0.06	0.08	0.07	0.03
$k=2, c=1, n=2$	0.06	0.11	0.28	6.30	0.06
$k=2, c=1, n=3$	3562.14	1696.26	1755.03	timeout	3267.10

Outlook

Beyond SAT: find $f: \forall x$ " $f(x)$ is good"

What can we do?

- simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

Outlook

Beyond SAT: find $f: \forall x$ " $f(x)$ is good"

What can we do?

- simple evaluation and reduction finding
-http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

What is hard?

- high-dimensional reductions
- symmetry breaking in example finding problems

Outlook

Beyond SAT: find $f: \forall x$ " $f(x)$ is good"

What can we do?

- simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

What is hard?

- high-dimensional reductions
- symmetry breaking in example finding problems

Other possible applications

- Finding LFP formulas for NP \cap coNP properties
- Early results on unary 1-variable 1-LFP
- reachability games in < 1 minute (answer: yes)
- parity games in < 1 hour (answer: no) (cf. Dawar, Grädel, CSL’08)

Outlook

Beyond SAT: find $f: \forall x$ " $f(x)$ is good"

What can we do?

- simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

What is hard?

- high-dimensional reductions
- symmetry breaking in example finding problems

Other possible applications

- Finding LFP formulas for NP \cap coNP properties
- Early results on unary 1-variable 1-LFP
- reachability games in < 1 minute (answer: yes)
- parity games in < 1 hour (answer: no) (cf. Dawar, Grädel, CSL’08)

Thank You

