Experiments with Reduction Finding

Skip Jordan and Łukasz Kaiser

ERATO Group, JST & Hokkaido University LIAFA, CNRS & Université Paris Diderot

SAT 2013

find x : "x is good"

The Magic of SAT

find x : "x is good"

Beyond SAT

find $f: \forall x "f(x)$ is good"

The Magic of SAT

find x : "x is good"

Beyond SAT

find $f: \forall x "f(x)$ is good"

Reduction Finding

find $r: \forall x (x \in P \leftrightarrow r(x) \in Q)$

The Magic of SAT

find x : "x is good"

Beyond SAT

find $f: \forall x "f(x)$ is good"

Reduction Finding

find
$$r: \forall x (x \in P \leftrightarrow r(x) \in Q)$$

Questions

- how do we represent r,P,Q, and x?
- how do we approach the problem? (CEGAR vs QBF vs ASP)
- how do current tools perform?

How do we represent reductions?

reduction $r: \forall x (x \in P \leftrightarrow r(x) \in Q)$

reduction
$$r: \forall x (x \in P \leftrightarrow r(x) \in Q)$$

Standard reductions

- r is a (ptime, logspace, ...) Turing machine
- *x* is a **word**
- P,Q are sets of words given by Turing machines

reduction
$$r: \forall x (x \in P \leftrightarrow r(x) \in Q)$$

Standard reductions

- r is a (ptime, logspace, ...) Turing machine
- *x* is a **word**
- P,Q are sets of words given by Turing machines

Reductions in logic

- r is a (quantifier-free, first-order, ...) query
- x is a relational structure
- P,Q are sets of structures given by formulas

reduction
$$r: \forall x (x \in P \leftrightarrow r(x) \in Q)$$

Standard reductions

- r is a (ptime, logspace, ...) Turing machine
- *x* is a **word**
- *P*,*Q* are sets of words given by **Turing machines**

Reductions in logic

- r is a (quantifier-free, first-order, ...) query
- x is a relational structure
- P,Q are sets of structures given by formulas

Question: is there a useful correspondence?

Relational Structures and Logics

 $\textbf{Relational Structures } \mathfrak{A} = (A, \textbf{R}_1^\mathfrak{A}, \textbf{R}_2^\mathfrak{A}, \dots, \textbf{R}_l^\mathfrak{A}, \textbf{c}_1^\mathfrak{A}, \dots, \textbf{c}_m^\mathfrak{A})$

Relational Structures and Logics

Relational Structures $\mathfrak{A} = (A, \mathbf{R}_1^{\mathfrak{A}}, \mathbf{R}_2^{\mathfrak{A}}, \dots, \mathbf{R}_l^{\mathfrak{A}}, \mathbf{c}_1^{\mathfrak{A}}, \dots, \mathbf{c}_m^{\mathfrak{A}})$

First-Order and Second-Order Logic over $\sigma = {E}$

The graph is a clique (FO): $\forall x, y(x = y \lor \mathbf{E}(x, y))$

The graph is 3-colourable $(\exists SO)$:

 $\exists R, G, B(\forall x, y (R(x) \lor G(x) \lor B(x)) \land (\mathbf{E}(x, y) \rightarrow (R(x) \land R(y)) \lor (G(x) \land G(y)) \lor (B(x) \land B(y))))$

Descriptive Complexity

FO Interpretations (Queries) $\theta = (k, \varphi_0, \psi_1, \dots, \psi_m)$

- k is the dimension
- $\varphi_0(x_1,\ldots,x_k)$ defines the new universe
- $\psi_i(x_1, \ldots, x_{kr_i})$ define the new relations

Descriptive Complexity

FO Interpretations (Queries) $\theta = (k, \varphi_0, \psi_1, \dots, \psi_m)$

- k is the dimension
- $\varphi_0(x_1,\ldots,x_k)$ defines the new universe
- $\psi_i(x_1, \ldots, x_{kr_i})$ define the new relations

Example: $(k = 2, \varphi_0 = \top, \psi_1(x_1, x_2, y_1, y_2) = \mathbf{E}(x_1, x_2) \land (y_1 = y_2 \lor y_2 = \mathbf{s}))$

Descriptive Complexity

FO Interpretations (Queries) $\theta = (k, \varphi_0, \psi_1, \dots, \psi_m)$

- k is the dimension
- $\varphi_0(x_1,\ldots,x_k)$ defines the new universe
- $\psi_i(x_1, \ldots, x_{kr_i})$ define the new relations

Example: $(k = 2, \varphi_0 = \top, \psi_1(x_1, x_2, y_1, y_2) = \mathbf{E}(x_1, x_2) \land (y_1 = y_2 \lor y_2 = \mathbf{s}))$

Complexity classes under interpretations (Immerman)

- quantifier-free reductions are weaker than ptime
- **still** P=NP iff $SAT \leq_{qf} CVP$
- and NL=NP iff SAT \leq_{qf} REACH,
- and coNL=NL (true) iff \neg REACH \leq_{qf} REACH

How do we find reductions?

Existential SO using SAT Solvers

Transformation $\exists SO \ni \varphi, \mathfrak{A} \rightsquigarrow \psi$ **Boolean**

 $\mathbf{Rel}(a_1,\ldots,a_k) \rightsquigarrow \top/_{\mathfrak{A}} \perp \qquad Var(a_1,\ldots,a_k) \rightsquigarrow X_{Var,a_1,\ldots,a_k}$

 $\varphi_1 \wedge \varphi_2 \rightsquigarrow \hat{\varphi}_1 \wedge \hat{\varphi}_2 \qquad \exists x \varphi \rightsquigarrow \bigvee_{a \in \mathfrak{A}} \hat{\varphi}(a) \qquad \forall x \varphi \rightsquigarrow \bigwedge_{a \in \mathfrak{A}} \hat{\varphi}(a)$

Existential SO using SAT Solvers

Transformation $\exists SO \ni \varphi, \mathfrak{A} \rightsquigarrow \psi$ **Boolean**

 $\mathbf{Rel}(a_1,\ldots,a_k) \rightsquigarrow \top/_{\mathfrak{A}} \perp \qquad Var(a_1,\ldots,a_k) \rightsquigarrow X_{Var,a_1,\ldots,a_k}$

 $\varphi_1 \wedge \varphi_2 \rightsquigarrow \hat{\varphi}_1 \wedge \hat{\varphi}_2 \qquad \exists x \varphi \rightsquigarrow \bigvee_{a \in \mathfrak{A}} \hat{\varphi}(a) \qquad \forall x \varphi \rightsquigarrow \bigwedge_{a \in \mathfrak{A}} \hat{\varphi}(a)$

Model-Checking

- (1) transform $\varphi, \mathfrak{A} \rightsquigarrow \psi$
- (2) solve ψ (using a sat solver)
- (3) decode \exists SO-variables from the answer

Existential SO using SAT Solvers

Transformation $\exists SO \ni \varphi, \mathfrak{A} \rightsquigarrow \psi$ **Boolean**

 $\mathbf{Rel}(a_1,\ldots,a_k) \rightsquigarrow \top/_{\mathfrak{A}} \perp \qquad Var(a_1,\ldots,a_k) \rightsquigarrow X_{Var,a_1,\ldots,a_k}$

 $\varphi_1 \wedge \varphi_2 \rightsquigarrow \hat{\varphi}_1 \wedge \hat{\varphi}_2 \qquad \exists x \varphi \rightsquigarrow \bigvee_{a \in \mathfrak{A}} \hat{\varphi}(a) \qquad \forall x \varphi \rightsquigarrow \bigwedge_{a \in \mathfrak{A}} \hat{\varphi}(a)$

Model-Checking

- (1) transform $\varphi, \mathfrak{A} \rightsquigarrow \psi$
- (2) solve ψ (using a sat solver)
- (3) decode \exists SO-variables from the answer

Example: 3-colouring a graph

 $\exists R, G, B\left(\forall x, y (R(x) \lor G(x) \lor B(x)) \land \left(\mathsf{E}(x, y) \to ((R(x) \land R(y)) \lor (G(x) \land G(y)) \lor (B(x) \land B(y))\right)\right)$

Two Basic Applications

Example (and counter-example) finding

 $\varphi \in \mathsf{FO}, n \in \mathbb{N} \quad \rightsquigarrow \quad \mathfrak{A} \mid |\mathfrak{A}| = n \text{ and } \mathfrak{A} \models \varphi \quad (\text{or } \mathfrak{A} \models \neg \varphi)$

Using \exists **SO:** change all relations in φ to SO variables

Two Basic Applications

Example (and counter-example) finding

 $\varphi \in \mathsf{FO}, n \in \mathbb{N} \quad \rightsquigarrow \quad \mathfrak{A} \mid |\mathfrak{A}| = n \text{ and } \mathfrak{A} \models \varphi \quad (\text{or } \mathfrak{A} \models \neg \varphi)$

Using \exists SO: change all relations in φ to SO variables

Formula finding

outline of
$$\varphi$$
, $\mathfrak{A} \rightarrow \varphi \mid \mathfrak{A} \vDash \varphi$

Outline: formula with Boolean atom guards. Example:

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Finding reductions by CEGAR

- Find a *I*-DNF reduction θ_i good on counter-examples $\mathfrak{E}_0, \ldots, \mathfrak{E}_i$
- Find a counter-example \mathfrak{E}_{i+1} to θ_i , iterate

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Finding reductions by CEGAR

- Find a *I*-DNF reduction θ_i good on counter-examples $\mathfrak{E}_0, \ldots, \mathfrak{E}_i$
- Find a counter-example \mathfrak{E}_{i+1} to θ_i , iterate

Finding reductions by QBF or ASP

$$\exists \theta \; \forall \mathfrak{A} \; (\mathfrak{A} \vDash \varphi_P \; \leftrightarrow \; \theta(\mathfrak{A}) \vDash \varphi_Q)$$

(1) convert the above to a Boolean formula (Σ_2^p) (2) use a solver

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Finding reductions by CEGAR

- Find a *I*-DNF reduction θ_i good on counter-examples $\mathfrak{E}_0, \ldots, \mathfrak{E}_i$
- Find a counter-example \mathfrak{E}_{i+1} to θ_i , iterate

Finding reductions by QBF or ASP

$$\exists \theta \; \forall \mathfrak{A} \; (\mathfrak{A} \vDash \varphi_P \; \leftrightarrow \; \theta(\mathfrak{A}) \vDash \varphi_Q)$$

(1) convert the above to a Boolean formula (Σ_2^p) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = $[tc_{x,y} \mathbf{E}(x,y)](.s,.t)$ SC := $\forall x, y(tc_{x,y} \mathbf{E}(x,y))$

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Finding reductions by CEGAR

- Find a *I*-DNF reduction θ_i good on counter-examples $\mathfrak{E}_0, \ldots, \mathfrak{E}_i$
- Find a counter-example \mathfrak{E}_{i+1} to θ_i , iterate

Finding reductions by QBF or ASP

 $\exists \theta \; \forall \mathfrak{A} \; (\mathfrak{A} \vDash \varphi_P \; \leftrightarrow \; \theta(\mathfrak{A}) \vDash \varphi_Q)$

(1) convert the above to a Boolean formula (Σ_2^p) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach = $[tc_{x,y} \mathbf{E}(x, y)](.s, .t)$ SC := $\forall x, y(tc_{x,y} \mathbf{E}(x, y))$

http://toss.sf.net/reduct.html

Assumptions: outline of θ and the maximal $|\mathfrak{A}|$ fixed

Finding reductions by CEGAR

- Find a *I*-DNF reduction θ_i good on counter-examples $\mathfrak{E}_0, \ldots, \mathfrak{E}_i$
- Find a counter-example \mathfrak{E}_{i+1} to θ_i , iterate

Finding reductions by QBF or ASP

$$\exists \theta \; \forall \mathfrak{A} \; (\mathfrak{A} \vDash \varphi_P \; \leftrightarrow \; \theta(\mathfrak{A}) \vDash \varphi_Q)$$

(1) convert the above to a Boolean formula (Σ_2^p) (2) use a solver

Easy example: s-t reachability to strongly connected (both NL-complete)

Reach =
$$[\operatorname{tc}_{x,y} \mathbf{E}(x,y)](.s,.t)$$
 SC := $\forall x, y(\operatorname{tc}_{x,y} \mathbf{E}(x,y))$
 $(k = 1, \varphi_0 = \top, \psi_1 = x_1 = \mathbf{s} \lor x_2 = \mathbf{t} \lor \mathbf{E}(x_2, x_1))$

How do current tools perform?

Reduction Finding Results

Unsolved cases out of 48 × 48 = 2304: CEGAR vs QBF vs ASP (claspD)

(c, n)	(1,3)	(2,3)	(3,3)	(1,4)	(2,4)	(3,4)
de-gms	0	0	10	0	5	103
de-cudd	0	116	537	0	186	722
rareqs	0	0	16	19	65	204
depqbf	0	142	547	16	297	711
qube	10	536	949	82	760	1082
cirqit	58	673	1138	511	1092	1357
cirqit'	157	523	903	-	-	-
skizzo	522	1058	1156	975	1327	1434
gringo	40	393	590	72	593	836
lparse	51	396	605	75	635	850
RedFind	1	152	396	2	347	547

CEGAR Results

Performance on \neg REACH to REACH, k = 1, scaling *n* (left) and *c* (right)

CEGAR Results

Performance on \neg REACH to REACH, k = 1, scaling *n* (left) and *c* (right)

Increasing dimension to k = 2

	de-ms	de-gms	de-cms	de-cudd	rareqs
<i>k</i> = 1, <i>c</i> = 1, <i>n</i> = 3	0.05	0.06	0.08	0.07	0.03
k = 2, c = 1, n = 2	0.06	0.11	0.28	6.30	0.06
k = 2, c = 1, n = 3	3562.14	1696.26	1755.03	timeout	3267.10

Beyond SAT: find $f : \forall x "f(x)$ is good"

What can we do?

- · simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

Beyond SAT: find $f : \forall x "f(x)$ is good"

What can we do?

- · simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

What is hard?

- high-dimensional reductions
- symmetry breaking in example finding problems

Beyond SAT: find $f : \forall x "f(x)$ is good"

What can we do?

- · simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

What is hard?

- high-dimensional reductions
- · symmetry breaking in example finding problems

Other possible applications

- Finding LFP formulas for NP ∩ coNP properties
- Early results on unary 1-variable 1-LFP
 - reachability games in < 1 minute (answer: yes)
 - parity games in < 1 hour (answer: no) (cf. Dawar, Grädel, CSL'08)

Beyond SAT: find $f : \forall x "f(x)$ is good"

What can we do?

- simple evaluation and reduction finding
- http://www-erato.ist.hokudai.ac.jp/~skip/de
- http://toss.sf.net/reduct.html

What is hard?

- high-dimensional reductions
- symmetry breaking in example finding problems

Other possible applications

- Finding LFP formulas for NP ∩ coNP properties
- Early results on unary 1-variable 1-LFP
 - reachability games in < 1 minute (answer: yes)
 - parity games in < 1 hour (answer: no) (cf. Dawar, Grädel, CSL'08)

Thank You