A Rank Lower Bound for Cutting Planes Proofs of Ramsey's Theorem

Massimo Lauria
KTH Royal Institute of Technology (Stockholm)

SAT 2013, Helsinki

Ramsey Theorem

There is a function $R(k)$ such that any graph with $R(k)$ vertices has either a clique or and independent set of size k.

$2^{k / 2}<R(k)<4^{k}$

SOME REMARKS ON THE THEORY OF GRAPHS

P. ERDÖS

The present note consists of some remarks on graphs. A graph G is a set of points some of which are connected by edges. We assume here that no two points are connected by more than one edge. The complementary graph G^{\prime} of G has the same vertices as G and two points are connected in G^{\prime} if and only if they are not connected in G.

A special case of a theorem of Ramsey can be stated in graph theoretic language as follows:

There exists a function $f(k, l)$ of positive integers k, l with the following property. Let there be given a graph G of $n \geqq f(k, l)$ vertices. Then either G contains a complete graph of order k, or G^{\prime} a complete graph of order l. (A complete graph is a graph any two vertices of which are connected. The order of a complete graph is the number of its vertices.)

It would he desirable to have a formula for $f(k, l)$. This at oresent

A Combinatorial Problem in Geometry
by
P. Erdös and G. Szekeres

Manchester

Introduction.
Our present problem has been suggested by Miss Esther Klein in connection with the following proposition.

From 5 points of the plane of which no three lie on the same straight line it is always possible to select 4 points determining a convex quadrilateral.

We present E. Klein's proof here because later on we are going to make use of it. If the least convex polygon which encloses the points is a quadrilateral or a pentagon the theorem ic triviol Tet therofore the enclocina nolveron he o trioncle $A B C$

Proof complexity of bounding $R(k)$

$R(k) \leq 4^{k}$ upper bound

- [Pudlák ‘91] easy in bounded depth sequent calculus
- [Pudlák 'I2] requires large proofs in resolution
$R(k) \leq n$ upper bound for $n=R(k)+O(1)$
- [Krajíček'II] hard for bounded depth sequent calculus
$R(k)>2^{k / 2}$ lower bound
- [L., Pudlák, Rödl,Thapen 'I3] requires large proofs in resolution

In this work

We show a lower bound for the "logical depth" (aka rank) of proving

$$
R(k) \leq 4^{k}
$$

in cutting planes.

Cutting planes proofs model integer programming techniques

- performance on combinatorial problems
- no lower bound is known for non artificial formulas
this is why we focus on logical depth

Outline

i. cutting planes proofs
ii. logical depth (i.e. rank) as a measure of hardness
iii. lower bound for " $R(k) \leq 4^{k}$ "

I.
 Cutting planes

A CNF is turned into a system of inequalities

$$
x \vee y \vee \neg z \quad \longrightarrow \quad x+y+(1-z) \geq 1
$$

A refutation is the derivation of

$$
-1 \geq 0
$$

Variables: $x_{i} \in\{0,1\}$

Proof lines: $\quad a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n} \leq b$

with $a_{i} \in \mathbb{Z}$ and $b \in \mathbb{Z}$

Sum: $\frac{\sum a_{i} x_{i} \leq b \quad \sum a_{i}^{\prime} x_{i} \leq b^{\prime}}{\sum\left(\alpha a_{i}+\beta a_{i}^{\prime}\right) x_{i} \leq \alpha b+\beta b^{\prime}} \quad \alpha, \beta \in \mathbb{N}$

Cut: $\frac{\sum c a_{i} x_{i} \leq b}{\sum a_{i} x_{i} \leq\left\lfloor\frac{b}{c}\right\rfloor} \quad c \in \mathbb{N}$

Results on cutting planes

- [Pudlák '97] There is a CNF formula with no polynomial length cutting planes refutations.
- [BGHMP '03] Linear rank lower bounds for random 3-CNF and Tseitin formulas.

II.
 Rank of a refutation

Initial inequalities have rank 0

$$
\frac{\sum a_{i} x_{i} \leq b \quad \sum a_{i}^{\prime} x_{i} \leq b^{\prime}}{\sum\left(\alpha a_{i}+\beta a_{i}^{\prime}\right) x_{i} \leq \alpha b+\beta b^{\prime}}
$$

$$
\frac{\sum c a_{i} x_{i} \leq b}{\sum a_{i} x_{i} \leq\left\lfloor\frac{b}{c}\right\rfloor}
$$

Initial inequalities have rank 0

$$
r_{1}
$$

r_{2}

$$
\frac{\sum a_{i} x_{i} \leq b \quad \sum a_{i}^{\prime} x_{i} \leq b^{\prime}}{\sum\left(\alpha a_{i}+\beta a_{i}^{\prime}\right) x_{i} \leq \alpha b+\beta b^{\prime}}
$$

$$
\frac{\sum c a_{i} x_{i} \leq b}{\sum a_{i} x_{i} \leq\left\lfloor\frac{b}{c}\right\rfloor}
$$

$$
\max \left(r_{1}, r_{2}\right)
$$

Initial inequalities have rank 0

$$
\begin{gathered}
r_{1} \\
\sum a_{i} x_{i} \leq b \quad \sum a_{i}^{\prime} x_{i} \leq b^{\prime} \\
\sum\left(\alpha a_{i}+\beta a_{i}^{\prime}\right) x_{i} \leq \alpha b+\beta b^{\prime} \\
\max \left(r_{1}, r_{2}\right)
\end{gathered}
$$

Initial inequalities have rank 0

$$
\begin{array}{cc}
r_{1} & r_{2} \\
\frac{\sum a_{i} x_{i} \leq b}{\sum\left(\alpha a_{i}+\beta a_{i}^{\prime}\right) x_{i} \leq \alpha b+\beta b^{\prime}} & \frac{\sum c a_{i}^{\prime} x_{i} \leq b}{} \\
\frac{\sum a_{i} x_{i} \leq\left\lfloor\frac{b}{c}\right\rfloor}{\max \left(r_{1}, r_{2}\right)} & r+1
\end{array}
$$

Rank of a refutation: rank of inequality $0 \leq-1$. (for CNF it is at most the number of variable)

Thm [CCH'89]: any inequality of rank d can be proved in length $O\left(n^{d}\right)$.

(viceversa does not hold [BGHMP '03])

Rank of a point: is the smallest rank among inequalities which eliminate the point.

GOAL

Prove that a fractional solution has large rank

TOOL

Protection lemma: if all points in the "protection set" P for point p have rank at least r, then point p has rank $r+1$.

Start: a feasible point p_{0}
Each S_{i} is a protection set of p_{i} and it is feasible.

If $p_{0} \ldots p_{r}$ are always feasible then p_{0} has rank $\geq r$

III.
 Lower bound for " $R(k) \leq 4^{k}$ "

Encoding the negation of $R(k) \leq 4^{k}$ bound

Fix $V=\left[4^{k}\right]$ and variables $x_{e} \in\{0,1\}$ for $e \in\binom{V}{2}$
$\forall S \in\binom{V}{k} \quad 1 \leq \sum_{e \in\binom{S}{2}} x_{e} \leq \frac{k(k-1)}{2}-1$

The size of the formula is $k^{2} 4^{k^{2}}=|V|^{O(\log |V|)}$

Encoding the negation of $R(k) \leq 4^{k}$ bound

Fix $V=\left[4^{k}\right]$ and variables $x_{e} \in\{0,1\}$ for $e \in\binom{V}{2}$
$\forall S \in\binom{V}{k} \quad 1 \leq \sum_{e \in\binom{S}{2}} x_{e} \leq \frac{k(k-1)}{2}-1$
S is not an independent set

The size of the formula is $k^{2} 4^{k^{2}}=|V|^{O(\log |V|)}$

Encoding the negation of $R(k) \leq 4^{k}$ bound

Fix $V=\left[4^{k}\right]$ and variables $x_{e} \in\{0,1\}$ for $e \in\binom{V}{2}$
$\forall S \in\binom{V}{k} \quad 1 \leq \sum_{e \in\binom{S}{2}} x_{e} \leq \frac{k(k-1)}{2}-1$
S is not an independent set
S is not a clique

The size of the formula is $k^{2} 4^{k^{2}}=|V|^{O(\log |V|)}$

Prosecutor wants to show that $R(k) \leq 4^{k}$.

Defender uses a model graph with no k clique/ind. set

as big as possible

 in order to fool the Prosecutoras long as possible.

$$
p_{0}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots \frac{1}{2}, \frac{1}{2}\right)
$$

$$
p_{0}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots \frac{1}{2}, \frac{1}{2}\right)
$$

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

adversarial

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

adversarial

model graph for $k=4$

- No homogenous sets of size k (independent of edges \{2i-l,2i\})
- For $\mathrm{x} \leq 2 \mathrm{i}-2$ the exactly one between edges $\{x, 2 i-I\}$ and $\{x, 2 i\}$ is in the graph

By probabilistic method we can show that there is model graph of size

$$
2^{k / 2}
$$

which gives a strategy for $2^{k / 2-1}$ rounds.

By probabilistic method we can show that there is model graph of size

$$
2^{k / 2}
$$

which gives a strategy for $2^{k / 2-1}$ rounds.

Thm: our formula requires cutting planes refutations of rank $2^{k / 2-1}$.

Summary

- Ramsey numbers $\mathrm{R}(\mathrm{k})$
- proof system for Integer Programming
- upper bounding $R(k)$ is "hard" for cutting planes
- a protection lemma for graph formulas.

Open problems

- New CP size lower bounds?
- Verifying witnesses for $R(k)>n$?
(see [L., Pudlák, Rödl,Thapen, 20I3])

Thank you

questions?
 remarks?

