Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation

${\sf Florian}\ {\sf Lonsing}^1 \quad {\sf Uwe}\ {\sf Egly}^1 \quad {\sf Allen}\ {\sf Van}\ {\sf Gelder}^2$

¹Vienna University of Technology http://www.kr.tuwien.ac.at/staff/{egly,lonsing}

> ²University of California at Santa Cruz, USA http://www.cse.ucsc.edu/~avg

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Overview (1/2)

Conflict-Driven Clause Learning (CDCL): [SS96]

- Crucial for the performance of modern SAT solvers.
- Resolution proofs, trimming the search space.
- Extensions of CDCL for SAT to QBF: QCDCL.

Traditional QCDCL for QBF: [ZM02, GNT02, GNT06, Let02]

- Like CDCL is based on resolution, QCDCL is based on Q-resolution.
- Q-resolution derivation of the clause to be learned.
- Tautological resolvents must be avoided explicitly.

Problem:

- Common approach to avoiding tautologies in traditional QCDCL has an exponential worst case [VG12].
- The derivation of a single learned clause might have an exponential number of intermediate resolvents.

Overview (1/2)

Conflict-Driven Clause Learning (CDCL): [SS96]

- Crucial for the performance of modern SAT solvers.
- Resolution proofs, trimming the search space.
- Extensions of CDCL for SAT to QBF: QCDCL.

Traditional QCDCL for QBF: [ZM02, GNT02, GNT06, Let02]

- Like CDCL is based on resolution, QCDCL is based on Q-resolution.
- Q-resolution derivation of the clause to be learned.
- Tautological resolvents must be avoided explicitly.

Problem:

- Common approach to avoiding tautologies in traditional QCDCL has an exponential worst case [VG12].
- The derivation of a single learned clause might have an exponential number of intermediate resolvents.

Our Work: efficient polynomial time procedure for QCDCL.

- QCDCL based on *QBF Pseudo Unit Propagation (QPUP)* [VG12]: carefully select the order of resolution steps in QCDCL to avoid tautologies.
- Learn a single non-tautological clause in polynomial time.
- QPUP-based QCDCL is compatible with other approaches (e.g. Alexandra's talk).
- Implementation in the search-based QBF solver DepQBF.

Syntax

- Prenex CNF: quantifier-free CNF over quantified Boolean variables.
- PCNF ψ := Q₁x₁...Q_nx_n. φ, where Q_i ∈ {∃, ∀}, no free variables.
- Q_ix_i ≤ Q_{i+1}x_{i+1}: variables are linearly ordered.

Example

A CNF: $(x \lor \neg y) \land (\neg x \lor y)$, and a PCNF: $\forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$.

Search-based QBF Solving with Clause Learning:

- Implicitly enumerate paths in a semantic tree by recursive variable instantiation.
- Terminology "QCDCL": conflict-driven clause learning (CDCL) for QBF.
- Learn clauses at unsatisfiable (i.e. conflicting) branches in the search tree.
- Like CDCL in SAT: QCDCL is based on resolution for QBF.

Q-Resolution:

- Combination of universal reduction and propositional resolution.
- Sound and refutational-complete proof system for QBF: Q-resolution proofs.

Definition ([BKF95])

Given a clause C, universal reduction (UR) on C produces the clause

$$UR(C) := C \setminus \{l \in L_{\forall}(C) \mid \forall l' \in L_{\exists}(C) : var(l') < var(l)\},\$$

where < is the linear variable ordering given by the quantifier prefix.

• Universal reduction deletes trailing universal literals from clauses.

Definition ([BKF95])

- Let C_1 , C_2 be non-tautological clauses where $v \in C_1$, $\neg v \in C_2$ for an \exists -variable v.
- Tentative Q-resolvent of C_1 and C_2 : $C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{v, \neg v\}.$
- If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ for some variable x, then no Q-resolvent exists.
- Otherwise, the non-tautological *Q*-resolvent is $C := UR(C_1 \otimes C_2)$.

- Generate assignments by assumptions, unit clause rule, universal reduction (UR).
- Like BCP for SAT: antecedent clauses and implication graphs.
- Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)					
p cnf 5 4 e 1 3 4 0 a 5 0 e 2 0 -1 2 0 3 5 -2 0 4 -5 -2 0	 Assignment A := {}. Assumption: A := A ∪ {1}. Clause (-1 2) is unit under A A := A ∪ {2} = {1,2} ante(2) := (-1 2) Clause (3 5 -2) is unit under A and UR. 				
-3 -4 0 Implication graph:	$A := A \cup \{3\} = \{1, 2, 3\}$ ante(3) := (3 5 -2) • Clause (4 5 -2) is unit under A and UR. $A := A \cup \{4\} = \{1, 2, 3, 4\}$ ante(4) := (4 5 -2) • Clause (-3 -4) is conflicting under A. ante(\emptyset) := (-3 -4)				

- Generate assignments by assumptions, unit clause rule, universal reduction (UR).
- Like BCP for SAT: antecedent clauses and implication graphs.
- Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)					
p cnf 5 4 e 1 3 4 0 a 5 0 e 2 0 -1 2 0	Assignment $A := \{\}$. • Assumption: $A := A \cup \{1\}$. • Clause (-1 2) is unit under A $A := A \cup \{2\} = \{1, 2\}$				
3 5 -2 0 4 -5 -2 0 -3 -4 0	ante(2) := $(-1 \ 2)$ • Clause (3 5 -2) is unit under A and UR. $A := A \cup \{3\} = \{1, 2, 3\}$ ante(3) := (3 5 -2)				
Implication graph:	• Clause $(4 \ 5 \ -2)$ is unit under A and UR. $A := A \cup \{4\} = \{1, 2, 3, 4\}$ $ante(4) := (4 \ 5 \ -2)$				
	 Clause (−3 −4) is conflicting under A. ante(Ø) := (−3 −4) 				

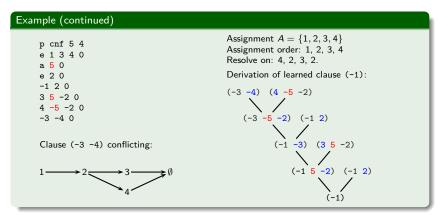
- Generate assignments by assumptions, unit clause rule, universal reduction (UR).
- Like BCP for SAT: antecedent clauses and implication graphs.
- Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)					
p cnf 5 4 e 1 3 4 0 a 5 0 e 2 0 -1 2 0 3 5 -2 0 4 -5 -2 0 -3 -4 0	Assignment $A := \{\}$. • Assumption: $A := A \cup \{1\}$. • Clause (-1 2) is unit under A $A := A \cup \{2\} = \{1, 2\}$ ante(2) := (-1 2) • Clause (3 5 -2) is unit under A and UR.				
Implication graph:	$A := A \cup \{3\} = \{1, 2, 3\}$ ante(3) := (3 5 -2) • Clause (4 5 -2) is unit under A and UR. $A := A \cup \{4\} = \{1, 2, 3, 4\}$ ante(4) := (4 5 -2)				
	 Clause (-3 -4) is conflicting under A. ante(Ø) := (-3 -4) 				

- Generate assignments by assumptions, unit clause rule, universal reduction (UR).
- Like BCP for SAT: antecedent clauses and implication graphs.
- Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

Example (assignments, implication graphs)					
p cnf 5 4 e 1 3 4 0 a 5 0 e 2 0 -1 2 0 3 5 -2 0 4 -5 -2 0 -3 -4 0	Assignment $A := \{\}$. • Assumption: $A := A \cup \{1\}$. • Clause (-1 2) is unit under A $A := A \cup \{2\} = \{1, 2\}$ ante(2) := (-1 2) • Clause (3 5 -2) is unit under A and UR. $A := A \cup \{3\} = \{1, 2, 3\}$				
Implication graph:	ante(3) := (3 5 −2) • Clause (4 5 −2) is unit under A and UR.				
$1 \longrightarrow 2 \longrightarrow 3$	$A := A \cup \{4\} = \{1, 2, 3, 4\}$ ante(4) := (4 5 -2) • Clause (-3 -4) is conflicting under A. ante(\emptyset) := (-3 -4)				

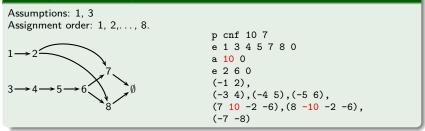
- Generate assignments by assumptions, unit clause rule, universal reduction (UR).
- Like BCP for SAT: antecedent clauses and implication graphs.
- Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

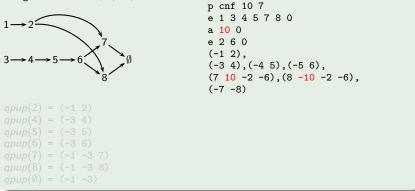

Example (assignments, implication graphs)				
p cnf 5 4 e 1 3 4 0 a 5 0 e 2 0 -1 2 0 3 5 -2 0 4 -5 -2 0 -3 -4 0	Assignment $A := \{\}$. • Assumption: $A := A \cup \{1\}$. • Clause (-1 2) is unit under A $A := A \cup \{2\} = \{1, 2\}$ ante(2) := (-1 2) • Clause (3 5 -2) is unit under A and UR. $A := A \cup \{3\} = \{1, 2, 3\}$			
Implication graph:	ante(3) := (3 5 −2) • Clause (4 5 −2) is unit under A and UR.			
$1 \longrightarrow 2 \longrightarrow 3$	$A := A \cup \{4\} = \{1, 2, 3, 4\}$ ante(4) := (4 5 -2) • Clause (-3 -4) is conflicting under A. ante(\emptyset) := (-3 -4)			

- Generate assignments by assumptions, unit clause rule, universal reduction (UR).
- Like BCP for SAT: antecedent clauses and implication graphs.
- Like CDCL for SAT: QCDCL is based on the implication graph given by QBCP.

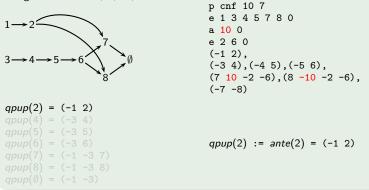
Example (assignments, implication graphs)				
p cnf 5 4 e 1 3 4 0 a 5 0 e 2 0 -1 2 0 3 5 -2 0 4 -5 -2 0 -3 -4 0	Assignment $A := \{\}$. • Assumption: $A := A \cup \{1\}$. • Clause (-1 2) is unit under A $A := A \cup \{2\} = \{1, 2\}$ ante(2) := (-1 2) • Clause (3 5 -2) is unit under A and UR. $A := A \cup \{3\} = \{1, 2, 3\}$			
Implication graph: $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \emptyset$	ante(3) := $(3 \ 5 \ -2)$ • Clause (4 5 -2) is unit under A and UR. $A := A \cup \{4\} = \{1, 2, 3, 4\}$ ante(4) := (4 5 -2)			
-4-	 ● Clause (-3 -4) is conflicting under A. ante(∅) := (-3 -4) 			

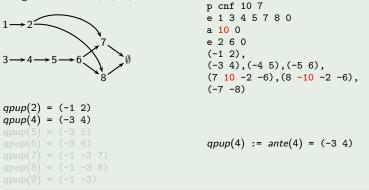
Review: Traditional QCDCL

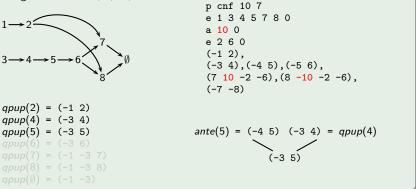

- Start at conflicting clause, resolve on existential variables *in reverse assignment order* until the resolvent is asserting (i.e. will be unit after backtracking).
- Resolve on existential variables which were assigned as unit literals, using clauses (i.e. antecedents) which became unit during QBCP.
- Tautological resolvents might occur but must be avoided by "resolving around": ⇒ deviate from strict reverse assignment order [GNT06].
- Worst case exponential number (in |IG|) of intermediate resolvents [VG12].

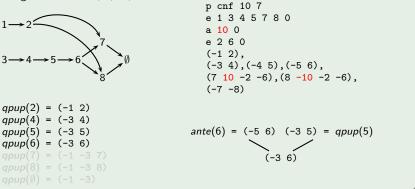

QBF Pseudo Unit Propagation (QPUP): [VG12]

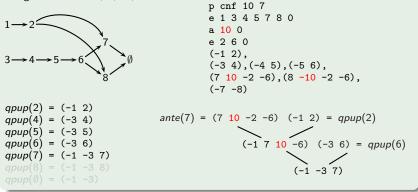
- Basic idea: given an implication graph (IG), associate the conflict node Ø and each variable x assigned by the unit literal rule with a "QPUP clause" qpup(x).
- Walking through the entire IG in assignment ordering, compute qpup(x) by resolving ante(x) with already computed qpup(y) s.t. $\neg y \in ante(x)$.
- Resolve in assignment ordering: tautologies cannot occur by construction.
 - Compare: traditional QCDCL resolves in reverse assignment ordering.
- Finally, the non-tautological and asserting QPUP clause *qpup(∅)* related to the conflict node *∅* can be learned.

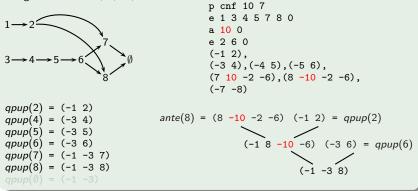

Example (to be continued)

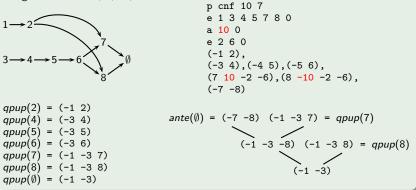

Assumptions: 1, 3 Assignment order: 1, 2,..., 8.

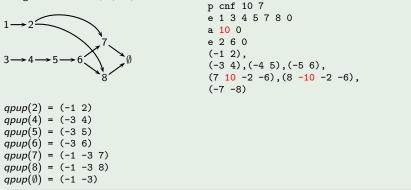

Assumptions: 1, 3 Assignment order: 1, 2,..., 8.


Assumptions: 1, 3 Assignment order: 1, 2,..., 8.


Assumptions: 1, 3 Assignment order: 1, 2,..., 8.


Assumptions: 1, 3 Assignment order: 1, 2,..., 8.


Assumptions: 1, 3 Assignment order: 1, 2,..., 8.


Assumptions: 1, 3 Assignment order: 1, 2,..., 8.

Assumptions: 1, 3 Assignment order: 1, 2,..., 8.

Assumptions: 1, 3 Assignment order: 1, 2,..., 8.

Problem:

- Computing QPUP clauses for every $n \in IG$: total |IG| resolution steps.
- Traversal starts at assumption nodes \Rightarrow full traversal, prohibitive at each conflict.
- Goal: find alternative start points closer to the conflict node \emptyset .

Unique Implication Points (UIPs):

- Nodes in the implication graph which are on every path from the most recent assumption to the conflict node \emptyset .
- Comprehensive theory in SAT CDCL [SLM09].
- A UIP is a good candidate as a start point to compute QPUP clauses.

Two-Phase Algorithm:

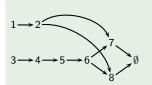
- Phase 1: starting at the conflict node Ø, walk back through the implication graph in reverse assignment order to find suitable start points.
 - Focus on finding UIPs.
 - In general, a single UIP as a start point is not enough.
 - At the latest, phase 1 terminates when reaching the assumption nodes.
- Phase 2: compute the QPUP clauses *qpup(x)* for all nodes *x* reachable when walking from the start points found in phase 1 towards the conflict node Ø.
 - Unlike in traditional QCDCL, here resolutions are done in assignment order.

Goal:

- The non-tautological and asserting QPUP clause $qpup(\emptyset)$ of the conflict node \emptyset computed in phase two will be learned.
- Challenge: what nodes are suitable start points?

11

Two-Phase Algorithm:


- Phase 1: starting at the conflict node Ø, walk back through the implication graph in reverse assignment order to find suitable start points.
 - Focus on finding UIPs.
 - In general, a single UIP as a start point is not enough.
 - At the latest, phase 1 terminates when reaching the assumption nodes.
- Phase 2: compute the QPUP clauses *qpup(x)* for all nodes *x* reachable when walking from the start points found in phase 1 towards the conflict node Ø.
 - Unlike in traditional QCDCL, here resolutions are done in assignment order.

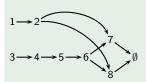
Goal:

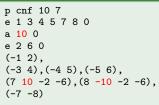
- The non-tautological and asserting QPUP clause *qpup(∅)* of the conflict node *∅* computed in phase two will be learned.
- Challenge: what nodes are suitable start points?

11

Example (computing QPUP clauses from start points)

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.


Observe:


Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

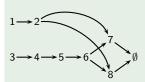
Nodes $\{1,5\}$ are suitable start points: $\{2, 6, 7, 8, \emptyset\}$ reachable and $qpup(\emptyset) = (-1 -$

Compare:

Example (computing QPUP clauses from start points)

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 - 10 - 2 - 6)$ tautological.

Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.


Observe:

Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

Nodes $\{1,5\}$ are suitable start points: $\{2,6,7,8,\emptyset\}$ reachable and $qpup(\emptyset) = (-1, -1)$

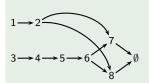
Compare:

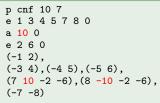
Example (computing QPUP clauses from start points)

p cnf 10 7 e 1 3 4 5 7 8 0 a 10 0 e 2 6 0 (-1 2), (-3 4),(-4 5),(-5 6), (7 10 -2 -6),(8 -10 -2 -6), (-7 -8)

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological. Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$.

Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.


Observe:

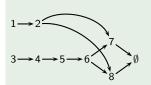

Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

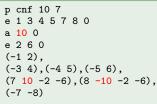
Nodes $\{1,5\}$ are suitable start points: $\{2, 6, 7, 8, \emptyset\}$ reachable and $qpup(\emptyset) = (-1 + 1)$

Compare:

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological. Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$.

Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.


Observe:

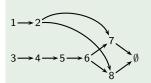

Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

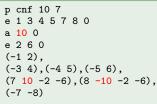
Nodes $\{1,5\}$ are suitable start points: $\{2,6,7,8,\emptyset\}$ reachable and $qpup(\emptyset) = (-1 -$

Compare:

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological. Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.

Observe:


Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

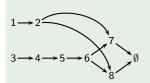

Nodes $\{1,5\}$ are suitable start points:

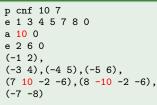
 $\{2, 6, 7, 8, \emptyset\}$ reachable and $qpup(\emptyset) = (-1 -5)$

Compare:

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological. Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.

Observe:


```
Node 5 is the 2-UIP, but qpup(\emptyset) = (-5 \ 10 \ -10 \ -2) is tautological. 

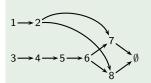

\Rightarrow must eventually resolve on variable 2 to avoid tautology.
```

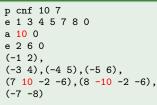
```
Nodes {1,5} are suitable start points:
{2,6,7,8,\emptyset} reachable and qpup(\emptyset) = (-1 -5)
```

Compare:

Example (computing QPUP clauses from start points)

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological. Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.


Observe:


Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

Nodes $\{1,5\}$ are suitable start points: $\{2,6,7,8,\emptyset\}$ reachable and $qpup(\emptyset) = (-1 -5)$

Compare:

Example (computing QPUP clauses from start points)

Node 6 is the 1-UIP, $\{7, 8, \emptyset\}$ reachable, $qpup(\emptyset) = (10 -10 -2 -6)$ tautological. Node 5 is the 2-UIP, $\{6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$. Node 4 is the 3-UIP, $\{5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-4 \ 10 \ -10 \ -2)$. Node 3 is the 4-UIP, $\{4, 5, 6, 7, 8, \emptyset\}$ reachable, but $qpup(\emptyset) = (-3 \ 10 \ -10 \ -2)$. \Rightarrow impossible to use a UIP as the single start point.

Observe:

Node 5 is the 2-UIP, but $qpup(\emptyset) = (-5 \ 10 \ -10 \ -2)$ is tautological. \Rightarrow must eventually resolve on variable 2 to avoid tautology.

Nodes $\{1,5\}$ are suitable start points: $\{2,6,7,8,\emptyset\}$ reachable and $qpup(\emptyset) = (-1 - 5)$

Compare:

Experiments (1/2)

Implementation:

- Search-based, clause-learning QBF solver DepQBF.
- Features: traditional QCDCL and QPUP-based QCDCL.
- Our implementation is more sophisticated than the procedure sketched before.
- No QPUP clauses are computed during the search for start points.

Example (formula class with exponential traditional QCDCL [VG12])

Each formula in this class can be decided by learning a single unit clause. The derivation of that learned clause by traditional QCDCL has an exponential number of resolution steps.

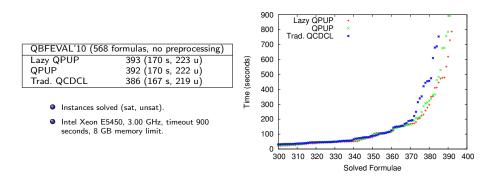

Size Parameter	1	2	3	4	5	6	7	8	9	10
Traditional QCDCL	6	14	30	62	126	254	510	1022	2046	4094
QPUP-based QCDCL	6	10	14	18	22	26	30	34	38	42

Table: number of resolutions in DepQBF to derive the single learned unit clause.

13

Benchmarks from Previous QBF Evaluations:

- Improvements with QPUP-based QCDCL.
- Lazy QPUP-based QCDCL: learn a clause without explicitly deriving it.
 - Conservatively predict the set literals definitely in the learned clause.
- Further experimental results: see the QBF Gallery 2013.

Traditional QCDCL for QBF:

- Based on implication graphs resulting from QBCP.
- Start at conflict node, resolve on variables in reverse assignment order.
- Tautologies must be avoided explicitly: exponential worst case.

QPUP-based QCDCL:

- Start at internal nodes of the implication graph, resolve on variables in assignment order working towards the conflict node.
- With the right set of start point, tautologies cannot occur by construction.
- For practical efficiency: finding start points close to the conflict node.
- Compatible with other approaches in search-based QBF solving.

Future Work:

- Procedural improvements.
- More detailed comparison of QCDCL variants (traditional, QPUP, lazy QPUP).

New version of DepQBF to be released: http://lonsing.github.com/depqbf/

Traditional QCDCL for QBF:

- Based on implication graphs resulting from QBCP.
- Start at conflict node, resolve on variables in reverse assignment order.
- Tautologies must be avoided explicitly: exponential worst case.

QPUP-based QCDCL:

- Start at internal nodes of the implication graph, resolve on variables in assignment order working towards the conflict node.
- With the right set of start point, tautologies cannot occur by construction.
- For practical efficiency: finding start points close to the conflict node.
- Compatible with other approaches in search-based QBF solving.

Future Work:

- Procedural improvements.
- More detailed comparison of QCDCL variants (traditional, QPUP, lazy QPUP).

New version of DepQBF to be released: http://lonsing.github.com/depqbf/

Traditional QCDCL for QBF:

- Based on implication graphs resulting from QBCP.
- Start at conflict node, resolve on variables in reverse assignment order.
- Tautologies must be avoided explicitly: exponential worst case.

QPUP-based QCDCL:

- Start at internal nodes of the implication graph, resolve on variables in assignment order working towards the conflict node.
- With the right set of start point, tautologies cannot occur by construction.
- For practical efficiency: finding start points close to the conflict node.
- Compatible with other approaches in search-based QBF solving.

Future Work:

- Procedural improvements.
- More detailed comparison of QCDCL variants (traditional, QPUP, lazy QPUP).

New version of DepQBF to be released: http://lonsing.github.com/depqbf/

H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 117(1):12–18, 1995.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean Logic Satisfiability. In *AAAI/IAAI*, pages 649–654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas.

J. Artif. Intell. Res. (JAIR), 26:371-416, 2006.

R. Letz.

Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas.

In U. Egly and C. G. Fermüller, editors, *TABLEAUX*, volume 2381 of *LNCS*, pages 160–175. Springer, 2002.

J. P. Marques Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning SAT Solvers.

In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, *Handbook of Satisfiability*, volume 185 of *Frontiers in Artificial Intelligence and Applications*, pages 131–153. IOS Press, 2009.

João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for satisfiability. In *ICCAD*, pages 220–227, 1996.

Allen Van Gelder.

Contributions to the Theory of Practical Quantified Boolean Formula Solving.

In Michela Milano, editor, *CP*, volume 7514 of *LNCS*, pages 647–663. Springer, 2012.

L. Zhang and S. Malik.

Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation.

In P. Van Hentenryck, editor, *CP*, volume 2470 of *LNCS*, pages 200–215. Springer, 2002.

15