Community-based Partitioning for MaxSAT Solving

Ruben Martins Vasco Manquinho Inês Lynce

IST/INESC-ID, Technical University of Lisbon, Portugal

July 10, 2013

What is Maximum Satisfiability?

CNF Formula:

$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	<i>x</i> 1
<i>x</i> 3	$x_2 \lor \bar{x}_1$	$\bar{x}_3 \lor x_1$

• Formula is unsatisfiable

What is Maximum Satisfiability?

CNF Formula:

$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	<i>x</i> 1
<i>x</i> 3	$x_2 \lor \bar{x}_1$	$\bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- Maximum Satisfiability (MaxSAT):
 - Find an assignment that maximizes (minimizes) number of satisfied (unsatisfied) clauses

What is Maximum Satisfiability?

CNF Formula:

$$\begin{array}{c} \bar{x}_2 \lor \bar{x}_1 \\ x_3 \end{array} \quad \begin{array}{c} x_2 \lor \bar{x}_3 \\ x_2 \lor \bar{x}_1 \end{array} \quad \begin{array}{c} x_3 \lor x_1 \end{array}$$

• An optimal solution would be:

$$\nu = \{x_1 = 1, x_2 = 1, x_3 = 1\}$$

• This assignment unsatisfies only 1 clause

MaxSAT Problems

- MaxSAT:
 - $\circ~$ All clauses are soft
 - Minimize number of unsatisfied soft clauses

MaxSAT Problems

- MaxSAT:
 - All clauses are soft
 - Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
 - Clauses are soft or hard
 - $\circ~$ Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses

MaxSAT Problems

- MaxSAT:
 - All clauses are soft
 - Minimize number of unsatisfied soft clauses
- Partial MaxSAT:
 - Clauses are soft or hard
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses
- Weighted Partial MaxSAT:
 - Clauses are soft or hard
 - Weights associated with soft clauses
 - Minimize sum of weights of unsatisfied soft clauses

MaxSAT Algorithms

- Branch and Bound:
 - $\circ~$ Extensive use of lower bounding procedures
 - Restrictive use of MaxSAT inference rules
- Linear search on the number of unsatisfied clauses:
 - Each time a new solution is found, a new constraint is added that excludes solutions with higher cost
- Unsatisfiability-based solvers:
 - $\circ~$ Iterative identification and relaxation of unsatisfiable subformulas

MaxSAT Algorithms

- Branch and Bound:
 - $\circ~$ Extensive use of lower bounding procedures
 - Restrictive use of MaxSAT inference rules
- Linear search on the number of unsatisfied clauses:
 - Each time a new solution is found, a new constraint is added that excludes solutions with higher cost

• Unsatisfiability-based solvers:

 $\circ~$ Iterative identification and relaxation of unsatisfiable subformulas

Partial MaxSAT Formula:

 $\begin{array}{lll} \varphi_h \mbox{ (Hard):} & \bar{x}_2 \lor \bar{x}_1 & x_2 \lor \bar{x}_3 \\ \\ \varphi_s \mbox{ (Soft):} & x_1 & x_3 & x_2 \lor \bar{x}_1 & \bar{x}_3 \lor x_1 \end{array}$

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ φ_s : x_1 x_3 $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

• Formula is unsatisfiable

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ φ_s : x_1 x_3 $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

- Relax unsatisfiable core:
 - Add relaxation variables
 - Add at-most-one constraint

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

• Formula is unsatisfiable

Partial MaxSAT Formula:

$$\varphi_h$$
: $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ φ_s : $x_1 \lor r_1$ $x_3 \lor r_2$ $x_2 \lor \bar{x}_1$ $\bar{x}_3 \lor x_1$

- Formula is unsatisfiable
- Identify an unsatisfiable core

Partial MaxSAT Formula:

 φ_h : $\bar{x}_2 \lor \bar{x}_1$ $x_2 \lor \bar{x}_3$ $\mathsf{CNF}(r_1 + r_2 \le 1)$ $\mathsf{CNF}(r_3 + \ldots + r_6 \le 1)$ φ_s : $x_1 \lor r_1 \lor r_3$ $x_3 \lor r_2 \lor r_4$ $x_2 \lor \bar{x}_1 \lor r_5$ $\bar{x}_3 \lor x_1 \lor r_6$

- Relax unsatisfiable core:
 - Add relaxation variables
 - Add at-most-one constraint

Partial MaxSAT Formula:

$\varphi_{\mathbf{h}}$:	$\bar{x}_2 \lor \bar{x}_1$	$x_2 \lor \bar{x}_3$	$CNF(r_1+r_2\leq 1)$	$CNF(r_3 + \ldots + r_6 \leq 1)$
$\varphi_{\mathbf{s}}$:	$x_1 \lor r_1 \lor r_3$	$x_3 \lor r_2 \lor r_4$	$x_2 \lor \bar{x}_1 \lor r_5$	$ar{x}_3 ee x_1 ee r_6$

- Formula is satisfiable
- An optimal solution would be:

$$\circ \ \nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

Partial MaxSAT Formula:

$$\varphi_h$$
: $\overline{x}_2 \lor \overline{x}_1$ $x_2 \lor \overline{x}_3$ φ_s : x_1 x_3 $x_2 \lor \overline{x}_1$ $\overline{x}_3 \lor x_1$

- Formula is satisfiable
- An optimal solution would be:

•
$$\nu = \{x_1 = 1, x_2 = 0, x_3 = 0\}$$

• This assignment unsatisfies 2 soft clauses

Unsatisfiability-based Algorithms

- Fu&Malik algorithm can be generalized for weighted partial MaxSAT (Manquinho et al. [SAT'09], Ansótegui et al. [SAT'09])
- Unsatisfiability-based algorithms are very effective on industrial benchmarks

Unsatisfiability-based Algorithms

- Fu&Malik algorithm can be generalized for weighted partial MaxSAT (Manquinho et al. [SAT'09], Ansótegui et al. [SAT'09])
- Unsatisfiability-based algorithms are very effective on industrial benchmarks
- However, performance is related with the unsatisfiable cores given by the SAT solver:
 - Some unsatisfiable cores may be unnecessarily large

Unsatisfiability-based Algorithms

- Fu&Malik algorithm can be generalized for weighted partial MaxSAT (Manquinho et al. [SAT'09], Ansótegui et al. [SAT'09])
- Unsatisfiability-based algorithms are very effective on industrial benchmarks
- However, performance is related with the unsatisfiable cores given by the SAT solver:
 - Some unsatisfiable cores may be unnecessarily large
 - Solution: Partitioning of the soft clauses

(1) Partition the soft clauses

- (1) Partition the soft clauses
- (2) Add a new partition to the formula

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

- (1) Partition the soft clauses
- (2) Add a new partition to the formula
- (3) While the formula is unsatisfiable:
 - Relax unsatisfiable core
- (4) The formula is satisfiable:
 - If there are no more partitions:
 ▷ Optimum found
 - $\circ~$ Otherwise, go back to 2

Unsatisfiability-based Algorithms w/ Partitioning

- How to partition the soft clauses?
 - For weighted partial MaxSAT, weight-based partitioning has shown to significantly improve the performance of the solver (Martins et al. [ECAI'12], Ansótegui et al. [CP'12])
 - $\circ~$ However, for partial MaxSAT all soft clauses have weight 1

Unsatisfiability-based Algorithms w/ Partitioning

- How to partition the soft clauses?
 - For weighted partial MaxSAT, weight-based partitioning has shown to significantly improve the performance of the solver (Martins et al. [ECAI'12], Ansótegui et al. [CP'12])
 - $\circ~$ However, for partial MaxSAT all soft clauses have weight 1
 - Solution: Graph-based partitioning

Hypergraph Partitioning

Hypergraph representation of a MaxSAT formula:

- Vertices: Represents each clause
- Hyperedge: For each variable, there is an hyperedge connecting all vertices that represent clauses that contain that variable

Hypergraph Partitioning

- $\omega_1 = [\bar{x}_1 \vee \bar{x}_2]$
- $\omega_2 = [x_2 \vee \bar{x}_3]$
- $\omega_3 = (x_1)$
- $\omega_4 = (x_3)$
- $\omega_5 = (x_2 \vee \bar{x}_1)$
- $\omega_6 = (\bar{x}_3 \vee x_1)$

Partitions given by hypergraph partitioning:

- Only soft clauses are considered in the partitions
- $\gamma_1 = \{\omega_3, \omega_6\}, \ \gamma_2 = \{\omega_4, \omega_5\}$

Community-based Partitioning (CVIG)

Clause-Variable Incidence Graph (CVIG) of a MaxSAT formula:

- Vertices: Represents each variable and each clause
- Edges: There is an edge between each variable and each clause where the variable occurs
- Each edge has a corresponding weight:
 - More weight is given to clauses that establish edges between variables that occur in soft clauses (details in the paper)

Community-based Partitioning (CVIG)

Partitions given by the identification of communities:

•
$$\gamma_1 = \{\omega_3, \omega_5\}, \ \gamma_2 = \{\omega_4, \omega_6\}$$

Community-based Partitioning (VIG)

Variable Incidence Graph (VIG) of a MaxSAT formula:

- Vertices: Represents each variable
- Edge: If two variables belong to the same clause, then there is an edge between them
- Each edge has a corresponding weight:
 - More weight is given to clauses that establish edges between variables that occur in soft clauses (details in the paper)

Community-based Partitioning (VIG)

Partitions given by the identification of communities:

• Mapping from the partition of variables to clauses

•
$$\gamma_1 = \{\omega_3, \omega_4, \omega_5, \omega_6\}$$

Experimental Results

- Benchmarks:
 - 504 industrial partial MaxSAT instances
- Solvers:
 - \circ WBO
 - \circ rdm (Random partitioning 16 partitions)
 - \circ hyp (Hypergraph partitioning 16 partitions)
 - \circ VIG (Community partitioning Variable Incidence Graph)
 - \circ CVIG (Community partitioning Clause-Variable Incidence Graph)
 - VBS (Virtual Best Solver)

Experimental Results

• Running times of solvers for industrial partial MaxSAT instances

12 / 13

Conclusions

- Partitioning approaches outperform WBO on most instances:
 - Finds smaller unsatisfiable cores:
 e.g. WBO: avg. 110 soft clauses VS. VIG: avg. 66 soft clauses
- All algorithms contribute to the VBS:
 - $\circ~$ Different graph-based partition methods solve different instances
 - Using the structure of the formula improves the partitioning
- Partitioning approaches are not limited to WBO:
 - $\circ\;$ The same idea can be applied to other unsatisfiability-based algorithms

Questions?