
Cliquewidth and Knowledge Compilation

Igor Razgon1 & Justyna Petke2

1Birkbeck, University of London, UK

2University College London, UK

Boolean functions

f (x) : Bn → B
B : {0,1}

n : a positive integer
x = (x1, x2, · · · , xn) : xi ∈ B

Boolean functions

Clausal entailment query:

Given a partial truth assignment, can it be extended to a
complete satisfying assignment?

Boolean functions

Clausal entailment query:

Given a partial truth assignment, can it be extended to a
complete satisfying assignment?

Good representation of Boolean functions:

The clausal entailment query can be answered in poly-time.

Some applications require good representations of Boolean
functions.

Boolean function representations - normal forms

• Conjunctive Normal Form (CNF)
• Disjunctive Normal Form (DNF)

DNF representation: ∨
Y∈T

(
∧

i|yi=1
xi

∧
j|yj=0

¬xj)

where T is a set of solutions to a Boolean function f

DNF is a good representation while CNF is not.

Knowledge compilation

• Off-line phase:
• propositional theory is compiled into some target language
• the target language must be a good representation!
• can be slow

Knowledge compilation

• On-line phase:
• the compiled target is used to efficiently answer a number

of queries
• fast (partly due to being good)

Knowledge compilation representation

NNF : Negation Normal Form
• conjunctions and disjunctions are the only connectives

used (e.g. CNF, DNF)

DNNF : Decomposable Negation Normal Form
• conjunctions and disjunctions are the only connectives

used
• atoms are not shared across conjunctions

Knowledge compilation representation

Properties:
• DNNF is a highly tractable representation
• every DNF is also a DNNF
• ∃ exponential DNF & linear DNNF for the same Boolean

function

Automated DNNF construction & graph parameters

• efficient DNNF compilation achieved when the input
clausal form is parameterised by the treewidth of the primal
graph of the input CNF

Automated DNNF construction & graph parameters

• efficient DNNF compilation achieved when the input
clausal form is parameterised by the treewidth of the primal
graph of the input CNF

• treewidth is always high for dense graphs

Automated DNNF construction & graph parameters

• efficient DNNF compilation achieved when the input
clausal form is parameterised by the treewidth of the primal
graph of the input CNF

• treewidth is always high for dense graphs
• better parameter: cliquewidth

Knowledge compilation result

Given a circuit Z of cliquewidth k , there is a DNNF of Z having
size O(918kk2|Z |).

Moreover, given a clique decomposition of Z of width k , there is
a O(918kk2|Z |) algorithm constructing such a DNNF.

Main result

Let Z be a Boolean circuit having cliquewidth k .
Then there is another circuit Z ∗ computing the same function

as Z having treewidth at most 18k + 2
and which has at most 4|Z | gates where Z is the number of

gates of Z .

Consequence: cliquewidth is not more ‘powerful’ than treewidth
for Boolean function representation

Obtaining the Know. Comp. Res. from the Main Result

• upgrade from DNNF parameterized by treewidth of the
primal graph of the input CNF to the treewidth of its
incidence graph

Primal vs. incidence graph

C = a ∨ b ∨ c

ap

cp

bp

C

ai

ci

bi

Obtaining the Know. Comp. Res. from the Main Result

• upgrade from DNNF parameterized by treewidth of the
primal graph of the input CNF to the treewidth of its
incidence graph

• extension from input CNF to input circuits (by Tseitin
transformation plus projection removing additional
variables)

• replacing the treewidth of the input circuit by the
cliquewidth of the input circuit using the main result

Small Cliquewidth and Large Treewidth

• a necessary condition: existence of large complete
bipartite subgraphs

• examples: complete graph, complete bipartite graph

Elimination of large bicliques in Boolean circuits

• necessary and sufficient condition:
a set X of many gates of the same type (∨ or ∧) share a
large set of Y common inputs

• elimination: introduce a new gate g of the same type with
inputs Y ; connect the output of g to all of X instead Y

• example: (a ∨ b ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ e) ∧ (a ∨ b ∨ c ∨ f)
• new gate: C = (a ∨ b ∨ c)
• modified circuit: (C ∨ d) ∧ (C ∨ e) ∧ (C ∨ f)

Elimination of large bicliques in Boolean circuits

a

c

b

d

e

f

C1

C2

C3

Elimination of large bicliques in Boolean circuits

a

c

b

d

e

f

C1

C2

C3

C4

Conclusions

• showed an efficient knowledge compilation parameterised
by cliquewidth of a Boolean circuit

• showed that cliquewidth is not more ‘powerful’ than
treewidth for Boolean function representation

