# Cliquewidth and Knowledge Compilation 

Igor Razgon ${ }^{1}$ \& Justyna Petke²
${ }^{1}$ Birkbeck, University of London, UK
${ }^{2}$ University College London, UK

## Boolean functions

$$
\begin{gathered}
f(x): B^{n} \rightarrow B \\
B:\{0,1\} \\
n: \text { a positive integer } \\
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right): x_{i} \in B
\end{gathered}
$$

## Boolean functions

Clausal entailment query:
Given a partial truth assignment, can it be extended to a complete satisfying assignment?

## Boolean functions

Clausal entailment query:
Given a partial truth assignment, can it be extended to a complete satisfying assignment?

Good representation of Boolean functions:
The clausal entailment query can be answered in poly-time.
Some applications require good representations of Boolean functions.

## Boolean function representations - normal forms

- Conjunctive Normal Form (CNF)
- Disjunctive Normal Form (DNF)

DNF representation:

$$
\bigvee_{Y \in T}\left(\bigwedge_{i \mid y_{i}=1} x_{i} \bigwedge_{j \mid y_{j}=0} \neg x_{j}\right)
$$

where $T$ is a set of solutions to a Boolean function $f$

DNF is a good representation while CNF is not.

## Knowledge compilation

- Off-line phase:
- propositional theory is compiled into some target language
- the target language must be a good representation!
- can be slow


## Knowledge compilation

- On-line phase:
- the compiled target is used to efficiently answer a number of queries
- fast (partly due to being good)


## Knowledge compilation representation

NNF : Negation Normal Form

- conjunctions and disjunctions are the only connectives used (e.g. CNF, DNF)

DNNF : Decomposable Negation Normal Form

- conjunctions and disjunctions are the only connectives used
- atoms are not shared across conjunctions


## Knowledge compilation representation

Properties:

- DNNF is a highly tractable representation
- every DNF is also a DNNF
- $\exists$ exponential DNF \& linear DNNF for the same Boolean function


## Automated DNNF construction \& graph parameters

- efficient DNNF compilation achieved when the input clausal form is parameterised by the treewidth of the primal graph of the input CNF


## Automated DNNF construction \& graph parameters

- efficient DNNF compilation achieved when the input clausal form is parameterised by the treewidth of the primal graph of the input CNF
- treewidth is always high for dense graphs


## Automated DNNF construction \& graph parameters

- efficient DNNF compilation achieved when the input clausal form is parameterised by the treewidth of the primal graph of the input CNF
- treewidth is always high for dense graphs
- better parameter: cliquewidth


## Knowledge compilation result

Given a circuit $Z$ of cliquewidth $k$, there is a DNNF of $Z$ having size $O\left(9^{18 k} k^{2}|Z|\right)$.
Moreover, given a clique decomposition of $Z$ of width $k$, there is a $O\left(9^{18 k} k^{2}|Z|\right)$ algorithm constructing such a DNNF.

## Main result

Let $Z$ be a Boolean circuit having cliquewidth $k$.
Then there is another circuit $Z^{*}$ computing the same function as $Z$ having treewidth at most $18 k+2$ and which has at most $4|Z|$ gates where $Z$ is the number of gates of $Z$.

Consequence: cliquewidth is not more 'powerful' than treewidth for Boolean function representation

## Obtaining the Know. Comp. Res. from the Main Result

- upgrade from DNNF parameterized by treewidth of the primal graph of the input CNF to the treewidth of its incidence graph


## Primal vs. incidence graph

$$
C=a \vee b \vee c
$$



## Obtaining the Know. Comp. Res. from the Main Result

- upgrade from DNNF parameterized by treewidth of the primal graph of the input CNF to the treewidth of its incidence graph
- extension from input CNF to input circuits (by Tseitin transformation plus projection removing additional variables)
- replacing the treewidth of the input circuit by the cliquewidth of the input circuit using the main result


## Small Cliquewidth and Large Treewidth

- a necessary condition: existence of large complete bipartite subgraphs
- examples: complete graph, complete bipartite graph


## Elimination of large bicliques in Boolean circuits

- necessary and sufficient condition: a set $X$ of many gates of the same type ( $\vee$ or $\wedge$ ) share a large set of $Y$ common inputs
- elimination: introduce a new gate $g$ of the same type with inputs $Y$; connect the output of $g$ to all of $X$ instead $Y$
- example: $(a \vee b \vee c \vee d) \wedge(a \vee b \vee c \vee e) \wedge(a \vee b \vee c \vee f)$
- new gate: $C=(a \vee b \vee c)$
- modified circuit: $(C \vee d) \wedge(C \vee e) \wedge(C \vee f)$


## Elimination of large bicliques in Boolean circuits



## Elimination of large bicliques in Boolean circuits



## Conclusions

- showed an efficient knowledge compilation parameterised by cliquewidth of a Boolean circuit
- showed that cliquewidth is not more 'powerful' than treewidth for Boolean function representation

