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The Cooperative Portfolio Approach
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Inprocessing in Clause Sharing SAT Solvers
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Inprocessing Clause Sharing
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Portfolios can be Described asState Transition Systems
I Local state for Solveri: Fi
I State with multiplicity n: (F1, . . . , Fn), SAT, UNSAT
I Initial state for F0 with multiplicity n: init(n, F0) = (F0, . . . , F0)
I Final states: SAT, UNSAT
I Transition relation: ;
I Soundness:

(i) if init(n, F0) ∗; SAT, then F0 is satisfiable, and(ii) if init(n, F0) ∗; UNSAT, then F0 is unsatisfiable
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System A
Where Equivalence is Preserved

SAT, UNSAT, CM, CS



SAT Termination Rule
F1 F2 . . . Fi . . . Fn

SAT

some Fi is satisfiable
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UNSAT Termination Rule
F1 F2 . . . Fi . . . Fn

UNSAT

some Fi is unsatisfiable
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Clause Management Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . F ′i . . . Fn

Fi and F ′i are equivalent
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Clause Sharing Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . Fi ∧ C . . . Fn

C ∈ Fj

9



Properties of System A
I Equivalence-Preserving:

I Probing
I Hyper Binary Resolution

I Instances: ManySAT, Penelope
I Key Invariant: If init(n, F0) ∗; (F1, . . . , Fn), then:

I Fi ≡ F0 for all i ∈ {1, . . . , n}.
I Theorem: System A is sound.
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System B
Inprocessing without Limits

SAT, UNSAT, CM, CS, UI



Unrestricted Inprocessing Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . F ′i . . . Fn

F ′i and Fi are equisatisfiable.

I F ′ and F are equisatisfiable iff:
(i) F and F ′ are satisfiable, or(ii) F and F ′ are unsatisfiable
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UNSAT can be Incorrect: UnrestrictedInprocessing and Clause Sharing.
I F = (x), F ′ = (x)
I F and F ′ are equisatisfiable
I F ∧ F ′ is unsatisfiable.
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Properties of System B
I Satisfiability-Preserving:

I Variable Elimination
I Equivalence Elimination
I Blocked Clause Elimination and Addition
I Extended Resolution
I Bounded Variable Addition

I Instances: ?
I Theorem:

I System B is sound w.r.t. SAT
I System B is unsound w.r.t. UNSAT.
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System C
With Clause Deletion Techniques

SAT, UNSAT, CM, CS, RI, ER, BVA



Restricted Inprocessing Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . F ′i . . . Fn

F ′i is an unsatisfiability-preserving
consequence of Fi

I F ′ is an unsatisfiability-preserving consequence of F :
(i) F |= F ′, and(ii) if F is unsatisfiable, then F ′ is unsatisfiable.
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Many Simplification Methods ProduceUnsatisfiability-Preserving Consequences
I Blocked Clause Elimination
I Variable Elimination
I Equivalence Elimination
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Extended Resolution Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . Fi ∧ (v ↔ x ∨ y) . . . Fn

v is globally fresh
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Bounded Variable Addition Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . F ′i ∧ (v → x ∧ y) . . . Fn

v is globally fresh
F ′i : replace (x ∨ E) ∧ (y ∨ E) with v ∨ E
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Properties of System C
I Unsatisfiability-Preserving Consequences:

I Blocked Clause Elimination
I Equivalence Elimination
I Variable Elimination
I Equivalence-Preserving Techniques

I Instances: PLingeling
I Key Invariant: If init(n, F0) ∗; (F1, . . . , Fn), then:(i) F0 ∧ D |= F1 ∧ . . . ∧ Fn(ii) F0 and F0 ∧ D are equisatisfiable(iii) Fi and F0 are equisatisfiable for all i ∈ {1, . . . , n}.
I Theorem: System C is sound.
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System D
With Clause Addition Techniques

SAT, UNSAT, CM, CS, ER, BVA, ADD, DEL



UNSAT can be Incorrect: ApplyingClause Addition Techniques in Two Solvers
I F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
I C = (x ∨ z) is blocked in F by z
I D = (y ∨ z) is blocked in F by z
I F is satisfiable:

I I = {x, y, z}
I J = {x, y, z}

I I 6|= C, J 6|= D
I F ∧ C ∧ D is unsatisfiable

F F

F ∧ C F

F ∧ C F ∧ D

F ∧ C ∧ D F ∧ D

UNSAT
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UNSAT can be Incorrect: Applying ClauseElimination and Addition Techniques in OneSolver
I F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
I C = (x ∨ z) is blocked in F by z
I D = (y ∨ z) is blocked in F by z
I F is satisfiable:

I I = {x, y, z}
I J = {x, y, z}

I F ∧ C is satisfiable:
I J = {x, y, z}

I F ∧ C ∧ D is unsatisfiable, since J 6|= D

F ∧ C F ∧ C

F F ∧ C

F ∧ D F ∧ C

F ∧ D ∧ C F ∧ C

UNSAT 20



Clause Addition Rule
F1 F2 . . . Fi . . . Fn

F1 ∧ C F2 . . . Fi . . . Fn

F1 and F1 ∧ C are equisatisfiable
vars(C) occur in F0
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Clause Deletion Rule
F1 F2 . . . Fi . . . Fn

F1 F2 . . . Fi . . . Fn

F ′i is an unsatisfiability-preserving
consequence of Fi
i > 1
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Properties of System D
I Clause Addition and Deletion Techniques:

I Unsatisfiability-Preserving Consequences
I Blocked Clause Addition

I Key Invariant: If init(n, F0) ∗; (F1, . . . , Fn), then:(i) F1 ∧ D |= F2 ∧ . . . ∧ Fn(ii) F1 and F1 ∧ D are equisatisfiable(iii) Fi and F0 are equisatisfiable for all i ∈ {1, . . . , n}.
I Theorem: System D is sound.
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Conclusion

?PLingeling
ManySAT

Penelope

I Unsatisfiability-Preserving Consequences
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Future Work
(1) Can portfolios be improved by adding a single distinguishedsolver incarnation that performs clause addition techniques?
(2) How can we extend the formalisms to parallel solvers based onthe search-space splitting approach?
(3) How can we extend the formalisms to parallel solvers withmultiple input formulas?
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