A Modular Approach to MaxSAT Modulo Theories

Alessandro Cimatti¹, Alberto Griggio¹, Bastiaan Joost Schaafsma^{1,2}, Roberto Sebastiani²

¹FBK-Irst, Trento, Italy; ²DISI, University of Trento, Italy

- SAT 2013, Helsinki, Finland, July 8-12, 2013 -

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 1 / 24

Outline

A Modular Approach to MaxSMT

- 3 Experimental Evaluation
- 4 Conclusions & Future Work

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 2 / 24

Context: Optimization Modulo Theories (OMT)

Need for Satisfiability Modulo Theories (SMT)

SMT solvers widely used as backend engines in formal verification, and many other applications

Need for Optimization Modulo Theories (OMT)

Many SMT-encodable problems require optimal solutions wrt. some cost function:

- optimization of physical layout of circuit designs
- formal verification of parametric systems
- scheduling and temporal reasoning
- displacement of tools
- synthesis of Bayesian networks
- radio link frequency assignment

Context: Optimization Modulo Theories (OMT)

Need for Satisfiability Modulo Theories (SMT)

SMT solvers widely used as backend engines in formal verification, and many other applications

Need for Optimization Modulo Theories (OMT)

Many SMT-encodable problems require optimal solutions wrt. some cost function:

- optimization of physical layout of circuit designs
- formal verification of parametric systems
- scheduling and temporal reasoning
- displacement of tools
- synthesis of Bayesian networks
- radio link frequency assignment

Optimization Modulo Theories (OMT): Previous Work

- A general framework [7]
- OMT with cost functions in the Boolean domain
 - SMT + Pseudo-Boolean cost functions [7, 3]
 - MaxSMT [7]
 - N.B.: can be encoded into each other.
- OMT with cost functions in the theory domain
 - OMT with linear real costs [8]

N.B.: Can encode OMT with Boolean costs, not vice versa

[7]: [Nieuwenhuis & Oliveras; SAT-06][3]: [Cimatti et al. ; TACAS-10][8]: [Sebastiani & Tomasi; IJCAR-12]

Optimization Modulo Theories (OMT): Previous Work

- A general framework [7]
- OMT with cost functions in the Boolean domain
 - SMT + Pseudo-Boolean cost functions [7, 3]
 - MaxSMT [7]

N.B.: can be encoded into each other.

- OMT with cost functions in the theory domain
 - OMT with linear real costs [8]

N.B.: Can encode OMT with Boolean costs, not vice versa

[7]: [Nieuwenhuis & Oliveras; SAT-06][3]: [Cimatti et al. ; TACAS-10][8]: [Sebastiani & Tomasi; IJCAR-12]

MaxSAT & MaxSMT: The Problems

notation

- $\langle ... \rangle^{\mathcal{B}}$: objects in the Boolean space
- $\langle ... \rangle^{\mathcal{T}}$: objects in the Theory space

•
$$\langle ... \rangle^{\mathcal{B}} \stackrel{\text{def}}{=} \mathcal{T}2\mathcal{B}(\langle ... \rangle^{\mathcal{T}}), \quad \langle ... \rangle^{\mathcal{T}} \stackrel{\text{def}}{=} \mathcal{B}2\mathcal{T}(\langle ... \rangle^{\mathcal{B}})$$

• $\mathcal{T2B}, \mathcal{B2T}$: Boolean abstraction & Theory refinement

[Partial Weighted] MaxSMT

Input: φ_h^T, φ_s^T : sets of hard and (weighted) soft clauses; • weight $w_i > 0$ of soft clause C_i : penalty if unsatisfied Output: a maximum-weight set $alert\psi_s^T$ of soft clauses s.t. $\psi_s^T \subseteq \varphi_s^T$ and $\varphi_h^T \cup \psi_s^T$ is satisfiable

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 5 / 24

MaxSAT & MaxSMT: The Problems

notation

- $\langle ... \rangle^{\mathcal{B}}$: objects in the Boolean space
- $\langle ... \rangle^{\mathcal{T}}$: objects in the Theory space

•
$$\langle ... \rangle^{\mathcal{B}} \stackrel{\text{def}}{=} \mathcal{T}2\mathcal{B}(\langle ... \rangle^{\mathcal{T}}), \quad \langle ... \rangle^{\mathcal{T}} \stackrel{\text{def}}{=} \mathcal{B}2\mathcal{T}(\langle ... \rangle^{\mathcal{B}})$$

• $\mathcal{T2B}, \mathcal{B2T}$: Boolean abstraction & Theory refinement

[Partial Weighted] MaxSAT

Input: $\varphi_h^{\mathcal{B}}, \varphi_s^{\mathcal{B}}$: sets of hard and (weighted) soft clauses; • weight $w_i > 0$ of soft clause C_i : penalty if unsatisfied Output: a maximum-weight set $\psi_s^{\mathcal{B}}$ of soft clauses s.t. $\psi_s^{\mathcal{B}} \subseteq \varphi_s^{\mathcal{B}}$ and $\varphi_h^{\mathcal{B}} \cup \psi_s^{\mathcal{B}}$ is satisfiable

Roberto Sebastiani ()

MaxSAT & MaxSMT: The Problems

notation

- $\langle ... \rangle^{\mathcal{B}}$: objects in the Boolean space
- $\langle ... \rangle^{\mathcal{T}}$: objects in the Theory space

•
$$\langle ... \rangle^{\mathcal{B}} \stackrel{\text{def}}{=} \mathcal{T}2\mathcal{B}(\langle ... \rangle^{\mathcal{T}}), \quad \langle ... \rangle^{\mathcal{T}} \stackrel{\text{def}}{=} \mathcal{B}2\mathcal{T}(\langle ... \rangle^{\mathcal{B}})$$

• $\mathcal{T2B}, \mathcal{B2T}$: Boolean abstraction & Theory refinement

[Partial Weighted] MaxSMT

Input: $\varphi_h^{\mathcal{T}}, \varphi_s^{\mathcal{T}}$: sets of hard and (weighted) soft \mathcal{T} -clauses; • weight $w_i > 0$ of soft clause C_i : penalty if unsatisfied Output: a maximum-weight set $\operatorname{alert} \psi_s^{\mathcal{T}}$ of soft \mathcal{T} -clauses s.t. $\psi_s^{\mathcal{T}} \subseteq \varphi_s^{\mathcal{T}}$ and $\varphi_h^{\mathcal{T}} \cup \psi_s^{\mathcal{T}}$ is \mathcal{T} -satisfiable

Roberto Sebastiani ()

MaxSMT: State of the Art

- Vaste bibliography on MaxSAT, plenty of tools available
- Very few work on MaxSMT:
 - a few related [7, 1, 3, 8] papers
 - few specific (Yices, Z3) or related [3, 8] implementations available

Note: involves both MaxSAT and SMT solving techniques:

- need expertise on both MaxSAT and SMT solving
- need access to both MaxSAT and SMT solvers' code
- \Longrightarrow sometimes hard to get (e.g., for MaxSAT experts/developers)

[7]: [Nieuwenhuis & Oliveras; SAT-2006]
[1]: [Ansotegui et al.; SARA-11]
[3]: [Cimatti et al. ; TACAS-10]
[8]: [Sebastiani & Tomasi; IJCAR-12]

MaxSMT: State of the Art

- Vaste bibliography on MaxSAT, plenty of tools available
- Very few work on MaxSMT:
 - a few related [7, 1, 3, 8] papers
 - few specific (Yices, Z3) or related [3, 8] implementations available

Note: involves both MaxSAT and SMT solving techniques:

- need expertise on both MaxSAT and SMT solving
- need access to both MaxSAT and SMT solvers' code
- \implies sometimes hard to get (e.g., for MaxSAT experts/developers)

[7]: [Nieuwenhuis & Oliveras; SAT-2006]
[1]: [Ansotegui et al.; SARA-11]
[3]: [Cimatti et al. ; TACAS-10]
[8]: [Sebastiani & Tomasi; IJCAR-12]

3 Experimental Evaluation

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 7 / 24

Lemma-Lifting (LL): a Novel Approach to MaxSMT

- Based on a cyclic interaction of a lazy SMT and a MaxSAT solver:
 - SMT produces and feeds to MaxSAT a chain of \mathcal{T} -lemma sets $\Theta_0^{\mathcal{T}}, \Theta_1^{\mathcal{T}}, \Theta_2^{\mathcal{T}}, ..., \Theta_N^{\mathcal{T}}$
 - MaxSAT produces and feeds to SMT a chain of soft-clause subsets $\psi^{\mathcal{B}}_{s,0}, \psi^{\mathcal{B}}_{s,1},...,\psi^{\mathcal{B}}_{s,N}$

Roberto Sebastiani ()

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Cyclic interaction of an SMT and a MaxSAT solver:
SMT used as generator of *T*-lemma sets Θ^T₀ ⊆ Θ^T₁ ⊂ Θ^T₂ ⊂ ...
MaxSAT used to extract maximum-weight clause sets ψ^B_{s,0}, ψ^B_{s,1}, ...
ψ^B_{s,l} current approximation of the solution, w(ψ^B_{s,l+1}) ≤ w(ψ^B_{s,l})
Repeated until φ^T₁ ∪ ψ^T_s is found *T*-satisfiable.

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 9 / 24

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Cyclic interaction of an SMT and a MaxSAT solver:

SMT used as generator of *T*-lemma sets Θ₀^T ⊆ Θ₁^T ⊂ Θ₂^T ⊂ ...
 ⇒ provides the information to rule-out *T*-inconsistent solutions
 MaxSAT used to extract maximum-weight clause sets ψ^B_{s,0}, ψ^B_{s,1}, ...
 ψ^B_{s,i} current approximation of the solution, w(ψ^B_{s,i+1}) ≤ w(ψ^B_{s,i})
 Repeated until φ^T_h ∪ ψ^T_s is found *T*-satisfiable.

Roberto Sebastiani ()

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Cyclic interaction of an SMT and a MaxSAT solver:

- SMT used as generator of *T*-lemma sets Θ^T₀ ⊆ Θ^T₁ ⊂ Θ^T₂ ⊂ ...
 ⇒ provides the information to rule-out *T*-inconsistent solutions
- MaxSAT used to extract maximum-weight clause sets ψ^B_{s,0}, ψ^B_{s,1}, ...
 ψ^B_{s,i} current approximation of the solution, w(ψ^B_{s,i+1}) ≤ w(ψ^B_{s,i})

Repeated until $\varphi_h^T \cup \psi_s^T$ is found \mathcal{T} -satisfiable.

Roberto Sebastiani ()

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Cyclic interaction of an SMT and a MaxSAT solver:

- SMT used as generator of \mathcal{T} -lemma sets $\Theta_0^{\mathcal{T}} \subseteq \Theta_1^{\mathcal{T}} \subset \Theta_2^{\mathcal{T}} \subset ...$
 - \implies provides the information to rule-out \mathcal{T} -inconsistent solutions
- MaxSAT used to extract maximum-weight clause sets $\psi_{s,0}^{\mathcal{B}}, \psi_{s,1}^{\mathcal{B}}, ...$
 - $\psi_{s,i}^{\mathcal{B}}$ current approximation of the solution, $w(\psi_{s,i+1}^{\mathcal{B}}) \leq w(\psi_{s,i}^{\mathcal{B}})$

Repeated until $\varphi_h^T \cup \psi_s^T$ is found T-satisfiable.

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Cyclic interaction of an SMT and a MaxSAT solver:

- SMT used as generator of \mathcal{T} -lemma sets $\Theta_0^{\mathcal{T}} \subseteq \Theta_1^{\mathcal{T}} \subset \Theta_2^{\mathcal{T}} \subset ...$
 - \implies provides the information to rule-out \mathcal{T} -inconsistent solutions
- MaxSAT used to extract maximum-weight clause sets $\psi_{s,0}^{\mathcal{B}}, \psi_{s,1}^{\mathcal{B}}, ...$

• $\psi_{s,i}^{\mathcal{B}}$ current approximation of the solution, $w(\psi_{s,i+1}^{\mathcal{B}}) \leq w(\psi_{s,i}^{\mathcal{B}})$

Repeated until $\varphi_h^T \cup \psi_s^T$ is found T-satisfiable.

Roberto Sebastiani ()

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Intuition:

- SMT progressively generates enough *T*-lemmas in Θ^T s.t the theory refinement ψ^T_s of ψ^B_s ^{def} MaxSAT(φ^B_h ∪ Θ^B, φ^B_s) is *T*-satisfiable.
- MaxSAT produces progressively-finer approximations of the solution, $\psi_s^{\mathcal{B}}$, whose refinement $\psi_s^{\mathcal{T}}$ drives SMT to produce the next \mathcal{T} -lemmas

Roberto Sebastiani ()

Lemma-Lifting Approach: MaxSMT(φ_h^T, φ_s^T)

Intuition:

- SMT progressively generates enough *T*-lemmas in Θ^T s.t the theory refinement ψ^T_s of ψ^B_s ^{def} MaxSAT(φ^B_h ∪ Θ^B, φ^B_s) is *T*-satisfiable.
- MaxSAT produces progressively-finer approximations of the solution, ψ^B_s, whose refinement ψ^T_s drives SMT to produce the next *T*-lemmas

Roberto Sebastiani ()

$$\begin{split} \varphi_{h}^{\mathcal{T}} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} & \stackrel{\text{def}}{=} \emptyset \\ \varphi_{s}^{\mathcal{T}} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) [4] \\ C_{1} : ((x \leq 1)) [3] \\ C_{2} : ((x \geq 2)) [2] \\ C_{3} : ((x \geq 3)) [6] \end{cases} & \varphi_{s}^{\mathcal{B}} & \stackrel{\text{def}}{=} \begin{cases} (A_{0}) [4] \\ (A_{1}) [3] \\ (A_{2}) [2] \\ (A_{3}) [6] \end{cases} \\ \theta_{2} : (-(x \geq 3) \lor (x \geq 2)) \\ \theta_{3} : (-(x \leq 0) \lor \neg (x \geq 2)) \\ \theta_{4} : (-(x \leq 0) \lor \neg (x \geq 2)) \\ \theta_{5} : (-(x \leq 1) \lor \neg (x \geq 2)) \\ \theta_{6} : (-(x \leq 1) \lor \neg (x \geq 3)) \end{cases} & \Theta_{*}^{\mathcal{B}} & = \begin{cases} (-A_{0} \lor A_{1}) \\ (-A_{3} \lor A_{2}) \\ (-A_{0} \lor \neg A_{2}) \\ (-A_{0} \lor \neg A_{2}) \\ (-A_{1} \lor \neg A_{3}) \end{cases} \end{split}$$

Roberto	Sebastiani ()	A Modular Approx	ach to MaxSMT	July 8-12, 2010	3 10/24
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□≻∢∂≻∢≣≻S≜T≻	₹ • ೧ .୯
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
1	$\{\theta_4\}$	$\{ , C_1, C_2, C_3 \}$	11	UNSAT	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$W(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	

$$\begin{split} \varphi_{h}^{\mathcal{T}} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} & \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{\mathcal{T}} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) & [4] \\ C_{1} : ((x \leq 1)) & [3] \\ C_{2} : ((x \geq 2)) & [2] \\ C_{3} : ((x \geq 3)) & [6] \end{cases} & \psi_{s}^{\mathcal{B}} & \stackrel{\text{def}}{=} \begin{cases} (A_{0}) & [4] \\ (A_{1}) & [3] \\ (A_{2}) & [2] \\ (A_{3}) & [6] \end{cases} \\ \theta_{2} : & (\neg(x \geq 3) \lor (x \geq 2)) \\ \theta_{3} : & (\neg(x \leq 0) \lor \neg(x \geq 2)) \\ \theta_{4} : & (\neg(x \leq 0) \lor \neg(x \geq 2)) \\ \theta_{5} : & (\neg(x \leq 1) \lor \neg(x \geq 2)) \\ \theta_{6} : & (\neg(x \leq 1) \lor \neg(x \geq 3)) \end{cases} & \Theta_{*}^{\mathcal{B}} & = \begin{cases} (\neg A_{0} \lor A_{1}) \\ (\neg A_{3} \lor A_{2}) \\ (\neg A_{0} \lor \neg A_{2}) \\ (\neg A_{0} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{3}) \end{cases} \end{split}$$

Roberto	Sebastiani ()	A Modular Approa	ach to MaxSM	T July 8-12, 2013	10/24
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□→∢@→∢≣→S&T⊳ ⊒	- ୬ ୯୯
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
-	$\{\theta_4\}$	$\{ , C_1, C_2, C_3 \}$	11	UNSAT	
() {}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
İ	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$W(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	

$$\begin{split} \varphi_{h}^{T} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} & \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{T} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : \left((x \leq 0) \right) \begin{bmatrix} 4 \\ C_{1} : \left((x \leq 1) \right) \begin{bmatrix} 3 \\ C_{2} : \left((x \geq 2) \right) \begin{bmatrix} 2 \\ C_{3} : \left((x \geq 3) \right) \end{bmatrix}} \\ C_{3} : \left((x \geq 3) \right) \begin{bmatrix} 6 \end{bmatrix} \end{cases} & \psi_{s}^{\mathcal{B}} & \stackrel{\text{def}}{=} \begin{cases} \left(A_{0} \right) \begin{bmatrix} 4 \\ (A_{1}) \begin{bmatrix} 3 \\ (A_{2}) \begin{bmatrix} 2 \\ (A_{3}) \end{bmatrix}} \\ (A_{2}) \begin{bmatrix} 2 \\ (A_{3}) \end{bmatrix}} \\ (A_{3}) \begin{bmatrix} 6 \end{bmatrix} \end{cases} \\ \Theta_{*}^{\mathcal{T}} & = \begin{cases} \theta_{1} : \left(\neg (x \leq 0) \lor (x \leq 1) \right) \\ \theta_{2} : \left(\neg (x \leq 0) \lor (x \geq 2) \right) \\ \theta_{3} : \left(\neg (x \leq 0) \lor (x \geq 2) \right) \\ \theta_{4} : \left(\neg (x \leq 0) \lor (x \geq 2) \right) \\ \theta_{5} : \left(\neg (x \leq 1) \lor (x \geq 2) \right) \\ \theta_{6} : \left(\neg (x \leq 1) \lor (x \geq 3) \right) \end{cases} & \Theta_{*}^{\mathcal{B}} & = \begin{cases} \left(\neg A_{0} \lor A_{1} \right) \\ \left(\neg A_{0} \lor A_{2} \right) \\ \left(\neg A_{0} \lor \neg A_{2} \right) \\ \left(\neg A_{1} \lor \neg A_{2} \right) \\ \left(\neg A_{1} \lor \neg A_{3} \right) \end{cases} \\ \end{split}$$

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$w(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{ , C_1, C_2, C_3 \}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□≻∢@≻∢≣≻S≜T⊬	≣ ୬୯୯
Roberto S	ebastiani ()	A Modular Approx	ach to MaxSMT	July 8-12, 201	3 10/24

$$\begin{split} \varphi_{h}^{T} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{B} \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{T} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) [4] \\ C_{1} : ((x \leq 1)) [3] \\ C_{2} : ((x \geq 2)) [2] \\ C_{3} : ((x \geq 3)) [6] \end{cases} & \psi_{s}^{B} \stackrel{\text{def}}{=} \begin{cases} (A_{0}) [4] \\ (A_{1}) [3] \\ (A_{2}) [2] \\ (A_{3}) [6] \end{cases} \\ \theta_{2} : (-(x \geq 3) \lor (x \geq 2)) \\ \theta_{3} : (-(x \leq 0) \lor -(x \geq 2)) \\ \theta_{4} : (-(x \leq 0) \lor -(x \geq 2)) \\ \theta_{5} : (-(x \leq 1) \lor -(x \geq 2)) \\ \theta_{6} : (-(x \leq 1) \lor -(x \geq 3)) \end{cases} & \Theta_{*}^{B} = \begin{cases} (-A_{0} \lor A_{1}) \\ (-A_{3} \lor A_{2}) \\ (-A_{0} \lor -A_{2}) \\ (-A_{0} \lor -A_{3}) \\ (-A_{1} \lor -A_{2}) \\ (-A_{1} \lor -A_{3}) \end{cases} \\ \end{split}$$

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$W(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{ , C_1, C_2, C_3 \}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□≻∢@≻∢≣≻S≜T⊳	≣ ୬୯୯
Roberto S	ebastiani ()	A Modular Approx	ach to MaxSMT	July 8-12, 201	3 10/24

$$\begin{split} \varphi_{h}^{T} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} & \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{\mathcal{T}} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) & [4] \\ C_{1} : ((x \leq 1)) & [3] \\ C_{2} : ((x \geq 2)) & [2] \\ C_{3} : ((x \geq 3)) & [6] \end{cases} & \psi_{s}^{\mathcal{B}} & \stackrel{\text{def}}{=} \begin{cases} (A_{0}) & [4] \\ (A_{1}) & [3] \\ (A_{2}) & [2] \\ (A_{3}) & [6] \end{cases} \\ \theta_{2} : (-(x \geq 3) \lor (x \geq 2)) \\ \theta_{3} : (-(x \leq 0) \lor -(x \geq 2)) \\ \theta_{4} : (-(x \leq 0) \lor -(x \geq 2)) \\ \theta_{5} : (-(x \leq 1) \lor -(x \geq 2)) \\ \theta_{6} : (-(x \leq 1) \lor -(x \geq 3)) \end{cases} & \Theta_{*}^{\mathcal{B}} & = \begin{cases} (-A_{0} \lor A_{1}) \\ (-A_{3} \lor A_{2}) \\ (-A_{0} \lor -A_{2}) \\ (-A_{0} \lor -A_{2}) \\ (-A_{1} \lor -A_{2}) \\ (-A_{1} \lor -A_{3}) \end{cases} \end{split}$$

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$w(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	•
1	$\{\theta_4\}$	$\{, C_1, C_2, C_3\}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□▶∢@⊁∢≣⊁S≜T⊁	≣ ୬ ୯ ୯
Roberto S	ebastiani ()	A Modular Approx	ach to MaxSMT	July 8-12, 20	13 10/24

$$\begin{split} \varphi_{h}^{\mathcal{T}} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} & \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{\mathcal{T}} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) & [4] \\ C_{1} : ((x \leq 1)) & [3] \\ C_{2} : ((x \geq 2)) & [2] \\ C_{3} : ((x \geq 3)) & [6] \end{cases} & \psi_{s}^{\mathcal{B}} & \stackrel{\text{def}}{=} \begin{cases} (A_{0}) & [4] \\ (A_{1}) & [3] \\ (A_{2}) & [2] \\ (A_{3}) & [6] \end{cases} \\ \theta_{2} : (-(x \geq 3) \lor (x \geq 2)) \\ \theta_{3} : (-(x \leq 0) \lor \neg (x \geq 2)) \\ \theta_{4} : (-(x \leq 0) \lor \neg (x \geq 2)) \\ \theta_{5} : (-(x \leq 1) \lor \neg (x \geq 2)) \\ \theta_{6} : (-(x \leq 1) \lor \neg (x \geq 3)) \end{cases} & \Theta_{*}^{\mathcal{B}} & = \begin{cases} (\neg A_{0} \lor A_{1}) \\ (\neg A_{3} \lor A_{2}) \\ (\neg A_{0} \lor \neg A_{2}) \\ (\neg A_{0} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{2}) \end{cases} \\ \end{split}$$

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$w(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{, C_1, C_2, C_3\}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□≻∢@≻∢≣≻S≜T⊳	≣ ୬୯୯
Roberto S	ebastiani ()	A Modular Approa	ach to MaxSMT	July 8-12, 201	3 10/24

$$\begin{split} \varphi_{h}^{T} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} & \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{\mathcal{T}} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) & [4] \\ C_{1} : ((x \leq 1)) & [3] \\ C_{2} : ((x \geq 2)) & [2] \\ C_{3} : ((x \geq 3)) & [6] \end{cases} & \psi_{s}^{\mathcal{B}} & \stackrel{\text{def}}{=} \begin{cases} (A_{0}) & [4] \\ (A_{1}) & [3] \\ (A_{2}) & [2] \\ (A_{3}) & [6] \end{cases} \\ \theta_{2} : (-(x \geq 3) \lor (x \geq 2)) \\ \theta_{3} : (-(x \leq 0) \lor \neg (x \geq 2)) \\ \theta_{4} : (-(x \leq 0) \lor \neg (x \geq 2)) \\ \theta_{5} : (-(x \leq 1) \lor \neg (x \geq 2)) \\ \theta_{6} : (-(x \leq 1) \lor \neg (x \geq 3)) \end{cases} & \Theta_{*}^{\mathcal{B}} & = \begin{cases} (\neg A_{0} \lor A_{1}) \\ (\neg A_{3} \lor A_{2}) \\ (\neg A_{0} \lor \neg A_{2}) \\ (\neg A_{0} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{2}) \\ (\neg A_{1} \lor \neg A_{3}) \end{cases} \end{split}$$

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$W(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{, C_1, C_2, C_3\}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{\theta_4, \theta_6, \theta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□≻ ∢∂≻ ∢≣≻ S≜T	≣ ୬୯୯
Roberto S	ebastiani ()	A Modular Appro	ach to MaxSMT	July 8-12, 201	3 10/24

$$\begin{split} \varphi_{h}^{T} & \stackrel{\text{def}}{=} \emptyset & \varphi_{h}^{\mathcal{B}} \stackrel{\text{def}}{=} \emptyset \\ \psi_{s}^{\mathcal{T}} & \stackrel{\text{def}}{=} \begin{cases} C_{0} : ((x \leq 0)) [4] \\ C_{1} : ((x \leq 1)) [3] \\ C_{2} : ((x \geq 2)) [2] \\ C_{3} : ((x \geq 3)) [6] \end{cases} & \psi_{s}^{\mathcal{B}} \stackrel{\text{def}}{=} \begin{cases} (A_{0}) [4] \\ (A_{1}) [3] \\ (A_{2}) [2] \\ (A_{3}) [6] \end{cases} \\ \theta_{2} : (-(x \leq 3) \lor (x \geq 2)) \\ \theta_{3} : (-(x \leq 0) \lor -(x \geq 2)) \\ \theta_{4} : (-(x \leq 0) \lor -(x \geq 2)) \\ \theta_{5} : (-(x \leq 1) \lor -(x \geq 2)) \\ \theta_{6} : (-(x \leq 1) \lor -(x \geq 3)) \end{cases} & \Theta_{*}^{\mathcal{B}} = \begin{cases} (-A_{0} \lor A_{1}) \\ (-A_{3} \lor A_{2}) \\ (-A_{0} \lor -A_{2}) \\ (-A_{0} \lor -A_{2}) \\ (-A_{1} \lor -A_{2}) \\ (-A_{1} \lor -A_{3}) \end{cases} \end{split}$$

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$w(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{, C_1, C_2, C_3\}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{ heta_4, heta_6, heta_3\}$	$\{ , , C_2, C_3 \}$	8	∢□≻∢@≻∢≣≻S≜T≻	₹ • 94 0
Roberto S	ebastiani ()	A Modular Approa	ach to MaxSM	T July 8-12, 2013	3 10/24

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$w(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{ , C_1, C_2, C_3 \}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{ heta_4, heta_6, heta_3\}$	$\{ , , C_2, C_3 \}$	8	 <!--</td--><td>≣ •ગα(</td>	≣ • ગ α(
Roberto S	ebastiani ()	A Modular Approx	ach to MaxSM	T July 8-12, 201	3 10/24

i	$\Theta_i^{\mathcal{T}}$	$\psi_{s,i}^{\mathcal{T}}$	$w(\psi_{s,i}^{\mathcal{T}})$	$SMT(\varphi_h^{\mathcal{T}} \cup \psi_{s,i}^{\mathcal{T}} \cup \Theta_i^{\mathcal{T}})$	
0	{}	$\{C_0, C_1, C_2, C_3\}$	15	UNSAT	
1	$\{\theta_4\}$	$\{, C_1, C_2, C_3\}$	11	UNSAT	
2	$\{\theta_4, \theta_6\}$	$\{C_0, C_1, C_2, \}$	9	UNSAT	
3	$\{ heta_4, heta_6, heta_3\}$	$\{ , , C_2, C_3 \}$	8	< □ > < @ > < ≥ > SAT	5 2 C
Roberto S	ebastiani ()	A Modular Appro	ach to MaxSM	T July 8-12, 2013	10 / 24

Some efficiency issues

- MaxSAT repeatedly invoked on incremental formulas φ^B_h ∪ Θ^B_i, φ^B_s ⇒ incrementality of the MaxSAT tool desirable
- SMT.Solve repeatedly invoked on "similar" formulas $\varphi_h^T \cup \psi_{s,i}^T \cup \Theta_i^T$
 - ⇒ SMT under assumptions: (a proxi variable for) each soft clause $C_j^{\mathcal{T}}$ is assumed iff $C_j^{\mathcal{T}} \in \psi_s^{\mathcal{T}}$
 - \implies learned clauses can be reused from call to call
- The more \mathcal{T} -lemmas generated, the less cycles performed.
 - \implies techniques to enlarge the \mathcal{T} -lemma pool generated by SMT (e.g., static learning, eager learning of \mathcal{T} -propagation clauses, ...

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some efficiency issues

- MaxSAT repeatedly invoked on incremental formulas φ^B_h ∪ Θ^B_i, φ^B_s ⇒ incrementality of the MaxSAT tool desirable
- SMT.Solve repeatedly invoked on "similar" formulas $\varphi_h^T \cup \psi_{s,i}^T \cup \Theta_i^T$
 - ⇒ SMT under assumptions: (a proxi variable for) each soft clause $C_j^{\mathcal{T}}$ is assumed iff $C_j^{\mathcal{T}} \in \psi_s^{\mathcal{T}}$
 - \implies learned clauses can be reused from call to call
- The more *T*-lemmas generated, the less cycles performed.
 ⇒ techniques to enlarge the *T*-lemma pool generated by SMT (e.g., static learning, eager learning of *T*-propagation clauses, ...)

Some efficiency issues

- MaxSAT repeatedly invoked on incremental formulas φ^B_h ∪ Θ^B_i, φ^B_s ⇒ incrementality of the MaxSAT tool desirable
- SMT.Solve repeatedly invoked on "similar" formulas $\varphi_h^T \cup \psi_{s,i}^T \cup \Theta_i^T$
 - ⇒ SMT under assumptions: (a proxi variable for) each soft clause C_j^T is assumed iff $C_j^T \in \psi_s^T$
 - \implies learned clauses can be reused from call to call
- The more $\mathcal{T}\text{-lemmas}$ generated, the less cycles performed.
 - \implies techniques to enlarge the \mathcal{T} -lemma pool generated by SMT (e.g., static learning, eager learning of \mathcal{T} -propagation clauses, ...)

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Very simple

- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required ⇒ basic version simple to implement
 - choice of tools from the shelf
 - \implies benefits for free from progress in the field

or not

- interleaving SMT and MaxSAT steps
- sharing more information between SMT and MaxSAT steps
- interleaving with other operations
- ...

. is it also efficient?

Roberto Sebastiani ()

Very simple

Independent from the theory/theories addressed

- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required ⇒ basic version simple to implement
 - choice of tools from the shelf
 - \implies benefits for free from progress in the field

or not

- interleaving SMT and MaxSAT steps
- sharing more information between SMT and MaxSAT steps
- interleaving with other operations
- ...

. is it also efficient?

Roberto Sebastiani ()

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required ⇒ basic version simple to implement
 - choice of tools from the shelf
 - \implies benefits for free from progress in the field
- ... or not
 - interleaving SMT and MaxSAT steps
 - sharing more information between SMT and MaxSAT steps
 - interleaving with other operations
 - ...

. is it also efficient?

Roberto Sebastiani ()

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required ⇒ basic version simple to implement
 - choice of tools from the shelf
 - \implies benefits for free from progress in the field
- or not
 - interleaving SMT and MaxSAT steps
 - sharing more information between SMT and MaxSAT steps
 - interleaving with other operations
 - ...

. is it also efficient?

Roberto Sebastiani ()

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required
 - \implies basic version simple to implement
 - choice of tools from the shelf
 - \implies benefits for free from progress in the field
- or not
 - interleaving SMT and MaxSAT steps
 - sharing more information between SMT and MaxSAT steps
 - interleaving with other operations
 - ...

. is it also efficient?

Roberto Sebastiani ()

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required
 - \implies basic version simple to implement
 - choice of tools from the shelf

⇒ benefits for free from progress in the field

or not

- interleaving SMT and MaxSAT steps
- sharing more information between SMT and MaxSAT steps
- interleaving with other operations
- ...

. is it also efficient?

Roberto Sebastiani ()

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required
 - \implies basic version simple to implement
 - choice of tools from the shelf
 - \Longrightarrow benefits for free from progress in the field
- or not
 - interleaving SMT and MaxSAT steps
 - sharing more information between SMT and MaxSAT steps
 - interleaving with other operations
 - ...

. is it also efficient?

Roberto Sebastiani ()

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required
 - \implies basic version simple to implement
 - choice of tools from the shelf
 - \Longrightarrow benefits for free from progress in the field
- ... or not
 - interleaving SMT and MaxSAT steps
 - sharing more information between SMT and MaxSAT steps
 - interleaving with other operations
 - ...

. is it also efficient?

- Very simple
- Independent from the theory/theories addressed
- Independent from the SMT technique (if provides the T-lemmas)
- Independent from the MaxSAT technique
- The MaxSAT and/or SMT solver can be used as blackboxes
 - no expertise or code access to SMT or MaxSAT solvers required
 - \Longrightarrow basic version simple to implement
 - choice of tools from the shelf
 - \Longrightarrow benefits for free from progress in the field
- ... or not
 - interleaving SMT and MaxSAT steps
 - sharing more information between SMT and MaxSAT steps
 - interleaving with other operations
 - ...

... is it also efficient?

Roberto Sebastiani ()

Outline

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 14 / 24

An empirical evaluation I

Benchmarks

- general lack of MaxSMT benchmark problems!
- \implies crafted two groups: weighted & un-weighted, 199 formulas each
 - SMT-LIB $\mathcal{LA}(\mathbb{Q})$ and $\mathcal{LA}(\mathbb{Z})$ formulas
 - random hard/soft partitioning
 - random weights

LL Implementations

- LL implemented on top of our MATHSAT5 SMT solver [4]
- Four dinstinct MaxSAT implementations
 - LL_{WPM}, the publicly-available WPM [2] implementation (PICOSAT);
 - LL_{YICES-WPM}, non-public implementation of WPM (YICES);
 - LL_{OWPM}, our own (incremental) WPM implementation (MINISAT);
 - LL_{NI-OWPM}, as before, (non-incremental) version.

[4]: [Cimatti et al. ; TACAS-13] [2]: [Ansotegui et al.; AIJ-13]

An empirical evaluation II

Competitors

- MathSMT implementations
 - YICES, the MaxSMT extension
 - Z3, the MaxSMT extension (Fu&Malik core-guided algorithm [6])
 - MATHSAT5-MAX our implementation of the algorithm of [6],

Related tools:

- MATHSAT4+C(L), the SMT+PB tool from [3], linear-search mode;
- MATHSAT5+C(L), the porting of the above procedure into MATHSAT5, linear-search mode;
- MATHSAT5+C(B), as before, binary-search mode;
- OPTIMATHSAT, the OMT($\mathcal{LA}(\mathbb{Q}) \cup \mathcal{T}$) tool of [8], with adaptive binary/linear search

[6]: [Fu & Malik; SAT-06] [3]: [Cimatti et al.; TACAS-10] [8]: [Sebastiani & Tomasi; IJCAR-12]

Results (un-weighted MaxSMT)

Solver		$\mathcal{LA}(\mathbb{Z})$		$\mathcal{LA}(\mathbb{Q})$		Total
Solver	#S.	time (sec)	#S.	time (sec)	#S.	time (sec)
MATHSAT5-MAX	95	6575.60	88	2274.69	183	8850.29
LL _{OWPM}	92	5942.20	88	1785.48	180	7727.68
YICES	92	14478.43	87	5537.47	179	20015.9
LL _{NI-OWPM}	89	4439.98	88	1780.97	177	6220.95
LL _{YICES-WPM}	89	4937.91	87	1855.45	176	6793.36
LL _{WPM}	88	7154.19	88	2071.27	176	9225.46
MATHSAT5+ $C(L)$	84	7112.43	87	2175.34	171	9287.77
MATHSAT4+ $C(L)$	83	5220.14	85	1944.48	168	7164.62
Z3	89	4066.92	76	2427.59	165	6494.51
MATHSAT5+ $C(B)$	78	5030.85	87	2545.69	165	7576.54
ΟρτιΜατήSAT		—	89	1360.05	_	—
TOTAL #:	106		93		199	

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Results (weighted MaxSMT)

Solver		$\mathcal{LA}(\mathbb{Z})$	Ĺ	$\mathcal{CA}(\mathbb{Q})$		Total
501761	#S.	time (sec)	#S.	time (s)	#S.	time (s)
LL _{WPM}	90	5194.73	87	3033.66	177	8228.39
LL _{NI-OWPM}	86	1672.41	88	2062.35	174	3734.76
MATHSAT5+ $C(L)$	89	5501.38	84	2359.61	173	7860.99
LL _{OWPM}	85	1304.13	87	1836.53	172	3140.66
MATHSAT4+ $C(L)$	87	3105.01	85	2541.83	172	5646.84
LL _{YICES-WPM}	82	1423.53	87	2350.02	169	3773.55
YICES	83	12305.88	80	9804.16	163	22110.04
MATHSAT5+ $C(B)$	79	9482.61	83	2627.35	162	12109.96
ΟΡΤΙΜΑΤΗSAT		—	88	1947.06	—	
TOTAL #:	106		93		199	

2

イロト イヨト イヨト イヨト

Outline

A Modular Approach to MaxSMT

Conclusions

A novel "Modular" approach for MaxSMT

- combine an SMT and MaxSAT solver
 - easy to implement
 - independent on theory, SMT technique and MaxSAT technique
 - allows to use s.o.a. tools from the shelf

• performance comparable with s.o.a.

A D A D A D A

Ongoing & Future Research Directions

Many possible improvements

- specialized SMT and MaxSAT solvers
- interleaving SMT and MaxSAT steps
- sharing more information between SMT and MaxSAT steps
- enrich with SMT unsat-core extraction [5], PB-cost constraints [3]
- ...

More extensive empirical evaluation

- collecting real-word problems
- Do you have MaxSMT/SMT+cost problems? Please send us!!

Ongoing & Future Research Directions

Many possible improvements

- specialized SMT and MaxSAT solvers
- interleaving SMT and MaxSAT steps
- sharing more information between SMT and MaxSAT steps
- enrich with SMT unsat-core extraction [5], PB-cost constraints [3]
- ...

More extensive empirical evaluation

- collecting real-word problems
- Do you have MaxSMT/SMT+cost problems? Please send us!!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions & Future Work

Roberto Sebastiani ()

A Modular Approach to MaxSMT

Conclusions & Future Work

©Warner Bros. Inc.

Questions?

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 22 / 24

æ

イロト イヨト イヨト イヨト

References I

- C. Ansótegui, M. Bofill, M. Palahí, J. Suy, and M. Villaret. Satisfiability Modulo Theories: An Efficient Approach for the Resource-Constrained Project Scheduling Problem. In SARA, 2011.
- [2] C. Ansótegui, M. L. Bonet, and J. Levy. Sat-based maxsat algorithms. *Artif. Intell.*, 196:77–105, 2013.
- [3] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Satisfiability modulo the theory of costs: Foundations and applications. In *TACAS*, volume 6015 of *LNCS*, pages 99–113. Springer, 2010.
- [4] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT 5 SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS'13., volume 7795 of LNCS, pages 95–109. Springer, 2013.
- [5] A. Cimatti, A. Griggio, and R. Sebastiani. Computing Small Unsatisfiable Cores in SAT Modulo Theories. Journal of Artificial Intelligence Research, JAIR, 40:701–728, April 2011.
- [6] Z. Fu and S. Malik.
 - On solving the partial max-sat problem.

In In International Conference on Theory and Applications of Satisfiability Testing (SAT), LNCS 4121, pages 252–265. Springer, 2006.

[7] R. Nieuwenhuis and A. Oliveras.

On SAT Modulo Theories and Optimization Problems.

In Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS. Springer, 2006.

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 23 / 24

References II

[8] R. Sebastiani and S. Tomasi.
 Optimization in SMT with LA(Q) Cost Functions.
 In IJCAR, volume 7364 of LNAI, pages 484–498. Springer, July 2012.

Roberto Sebastiani ()

A Modular Approach to MaxSMT

July 8-12, 2013 24 / 24

3

イロト イヨト イヨト イヨト