
Scarab

Scarab: A Rapid Prototyping Tool for
SAT-based Constraint Programming Systems

Takehide Soh, Naoyuki Tamura, and Mutsunori Banbara,

Kobe University

SAT 2013
(July 11th, 2013 at University of Helsinki)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.

It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Sat4j

Scarab

DSL
SAT Solver 

API

Encoder

Decoder

CSP Solver

API

Implemented by 500 lines of Scala

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

Scarab
DSL

SAT Solver 
API

Encoder

Decoder

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver 
API

Encoder

Decoder

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver 
API

Encoder

Decoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP
T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver 
API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP
T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver 
API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.

The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP
T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Overview

Scarab is a prototyping tool for developing SAT-based
Constraint Programming (CP) systems.
It consists of 1) CP Domain-Specific Language, 2) API of CSP
solver, 3) SAT encoding module, and 4) API of SAT solvers.
It uses Order Encoding and Sat4j in default.

Scarab
Program

Sat4j

CSP
object

Scarab
DSL

SAT Solver 
API

Encoder

CSP
solution

SAT
solutionDecoder

MAP

SAT
object

CSP Solver
API

(DSL+Scala)

It is developed to be an expressive, efficient, customizable,
and portable workbench.
The tight integration to Sat4j enables advanced CSP solving
such as incremental solving and the use of assumptions.

GCP
T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Graph Coloring Problem (GCP)

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Graph Coloring Problem (GCP)

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Graph Coloring Problem (GCP)

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Graph Coloring Problem (GCP)

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Graph Coloring Problem (GCP)

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Graph Coloring Problem (GCP)

1

4

5 2

3

Input Solution

1

2

34

5

1: import jp.kobe_u.scarab.csp._

2: import jp.kobe_u.scarab.solver._

3: import jp.kobe_u.scarab.sapp._

4:

5: val nodes = Seq(1,2,3,4,5)

6: val edges = Seq((1,2),(1,5),(2,3),(2,4),(3,4),(4,5))

7: val colors = 3

8: for (i <- nodes) int(’n(i),1,colors)

9: for ((i,j) <- edges) add(’n(i) !== ’n(j))

10:

11: if (find) println(solution)

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Pandiagonal Latin Square: PLS(n)

Place different n numbers into n × n matrix
such that each number appears exactly once
for each row, column, diagonally down right,
and diagonally up right.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

We can write five SAT-based PLS Solvers within 35 lines.

Name Modeling Encoding Lines

AD1 alldiff naive 17
AD2 with Perm. & P. H. Const. 31

BC1 Boolean Pairwise 22
BC2 Cardinality Totalizer [Bailleux ‘03] 35
BC3 Seq. Counter [Sinz ‘05] 27

Let’s have a look their performance. Note that, in CSP Solver
Comp. 2009, NO CSP solver (except Sugar) could solve n > 8.

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Pandiagonal Latin Square: PLS(n)

Place different n numbers into n × n matrix
such that each number appears exactly once
for each row, column, diagonally down right,
and diagonally up right.

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

We can write five SAT-based PLS Solvers within 35 lines.

Name Modeling Encoding Lines

AD1 alldiff naive 17
AD2 with Perm. & P. H. Const. 31

BC1 Boolean Pairwise 22
BC2 Cardinality Totalizer [Bailleux ‘03] 35
BC3 Seq. Counter [Sinz ‘05] 27

Let’s have a look their performance. Note that, in CSP Solver
Comp. 2009, NO CSP solver (except Sugar) could solve n > 8.

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Results (CPU Time in Seconds)

n SAT/UNSAT AD1 AD2 BC1 BC2 BC3

7 SAT 0.2 0.2 0.2 0.3 0.3
8 UNSAT T.O. 0.5 0.3 0.3 0.3
9 UNSAT T.O. 0.3 0.5 0.3 0.2

10 UNSAT T.O. 0.4 1.0 0.3 0.3
11 SAT 0.3 0.3 2.3 0.5 0.4
12 UNSAT T.O. 1.0 5.3 0.8 0.8
13 SAT T.O. 0.5 T.O. T.O. T.O.
14 UNSAT T.O. 9.7 32.4 8.2 6.8
15 UNSAT T.O. 388.9 322.7 194.6 155.8
16 UNSAT T.O. 457.1 546.6 300.7 414.8

Optimized version of alldiff model (AD2) solved all instances.

Modeling and encoding have an important role in developing
SAT-based systems and Scarab helps us to focus on them.

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems



Scarab Overview PLS(n) Demos

Demonstrations are available for . . .

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

3

Pandiagonal Latin Square

15
14

13 12 11

109 8

7

6

54

32 1

Square Packing

Colored N Queen Open-shop Scheduling

Langford Pairs, Alphametics, Magic Square, Optimization,
Enumerating Solutions, etc.

T. Soh, N, Tamura, and M. Banbara Scarab: a Rapid Prototyping Tool for SAT-based CP Systems


	Scarab
	Overview
	PLS(n)
	Demos


