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A famous problem (in CNF)

unknown problem
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A famous problem (in CNF)

C unknown problem

p cnf 12 22

1230456078 9010 11 12 0
-1 -4 0 -1 -7 0 -1 -10 O

-4 -7 0 -4 -10 0 =7 =10 O
-2 -5 0 -2 -8 0 -2 -11 0
-5 -3 0 -5 -11 0 -8 -11 O
-3 -6 0 -3 -9 0 -3 -12 0
-6 -9 0 -0 =12 0 -9 -12 0



A famous problem (in MiniZinc)

int: n;
array[l..n] of var 1..n-1: Xx;

constraint alldifferent (x);

solve satisfy;

n = 4; $ data could be

$ 1n different file



A famous problem (in MiniZinc)

int: ny;

set of 1nt: Pigeon = 1..n;
set of 1nt: Hole = 1..n-1;
array[Pigeon] of var Hole: x;
constraint alldifferent (x);

solve satisfy;

n = 4; $ data could be

$ 1n different file



A famous problem (in SMT-LIB?)

declare—-fun
declare—-fun
declare—-fun

assert (and
distinct x1
distinct x2Z

(

(

(

(

( (

( (
(assert (and
( (

(

(

(

(distinct x3

x1 () Int)

x2 () Int)

X3 () Int)

x4 () Int)

(< x1 4) (> x1 0)))
(< x2 4) (> x2 0)))
(< x3 4) (> x3 0)))
(< x4 4) (> x4 0)))
(distinct x1 x2)

X

di

3) (distinct x1 x4)
3) (distinct x2 x4)
4)



A famous problem (in SMT-LIB?)

(declare—-fun x1 () Int)
(declare—-fun x2 () Int)
(declare-fun x3 () Int)
(declare-fun x4 () Int)

(assert (and (< x1 4) (> x1 0)))
(assert (and (< x2 4) (> x2 0)))
(assert (and (< x3 4) (> x3 0)))
(assert (and (< x4 4) (> x4 0)))
(assert (alldifferent x1 x2 x3 x4))



Modelling and Solving Je

NICTA
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 The conceptual model

— A formal mathematical statement of the (simplified)
problem

* The design model
— In the form that can be handled by a solver
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Modelling and Solving




Modelling and Solving in SAT e
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Modelling and Solving in MiniZinc e

NICTA
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Propagation based solving (Je

: _ NICTA
» domain D maps var x to possible values D(x)

 propagator f.: D — D for constraint ¢
— monotonic decreasing function
— removes value which cannot be part of solution

* propagation solver D = solv(F,D)

— Repeatedly apply propagators f & F to D until (D) = D
forall fe F

* finite domain solving
— Add new constraint ¢, D’ = solv(F U {f_}, D)
— On failure backtrack and add not ¢
— Repeat until all variables fixed.

15



Propagation = Inference (Je

NICTA
« Example: z = y propagator f

— D(y) = {4,5,6}, D(z) = {0,1,2,3,4,5,6)

— f(D)(y) = {4,5,6}, (D)(z) = {4,5,6}

Domain Dis aformula: D = A, x & D(x)
Propagation

— DA c=2f(D)

On example

—ye{456} ANz=zy =z {4,5,6}
Separation:

— Core constraints (unary) A, x € S (complete solver)
— Inference of new core constraints from other constraints

16



Problem substructure @

_ NICTA
« Assignment substructure:

- alldifferent (x): maps each x to a different value
« Hamiltonian circuit substructure:
— circuit (next): next defines a Hamiltonian tour

 Resource utilization substructure

— cumulative (s, d, r, L) : tasks with starttime s,
duration d, and resource usage r, never use more
then L resources

» Packing substructure

- diff2(x,y,xd,yd) objects at (x.,y.) with size
(xd.,yd,) don’t overlap

17



FD propagation example

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c

* Constraints:

—-z2y,b—>y#3,c—>y=23,c— X206,

—4x + 10y + 5z <71 (lin)

 Example search

D(x)
D(y)
D(z)
D(b)
D(c)

x25 lin
5..6

0..6 0..5
0..6

0..1

0..1

b b—>y=/=3

0..2,4..5

c ¢c—>y23 c—>x26 z2y lin

6
4.5
4..6

O
O
O

18



FD propagation example

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c

e Constraints:

* Failure detected,
— backtrack and reverse last decision

D(x)
D(y)
D(z)
D(b)
D(c)

—-z2y,b—>y#3,c—>y=23,c— X206,

—4x+ 10y + 5z <71 (lin)

X295 lin
5..6
0..6 0..5
0..6
0..1
0..1

b

b—>y-'/=3

0..24.5

not ¢

(O
NICTA

19



FD propagation e

NICTA
« Strengths

— High level modelling

— Specialized global propagators capture substructure
« and all work together

— Programmable search

 \Weaknesses
— Weak autonomous search
— Optimization by repeated satisfaction
— Small models can be intractable

20
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Better CNF encoding ®

* Not all SAT encodings are equal

 Significant research encoding constraints to SAT
— Atmostone
— Cardinality constraints
— Psuedo-Boolean constraints
— Integer variables

« Significant research on “improving” a CNF model
after encoding: preprocessing.

24



Example: encoding Sudoku

o
w
~J

cells one(Xii1,...,Xij9) A

98] o1 ]
8 6
. 3|{ rows > /\one Zlk,... Xiok) N

§eN

6 2|o ik /\ )
al1l9 5 bOX@S One ......

- o “unit clauses' /\ inputs
At least
¥ one(by,...,by,) \/bn A
ik = cell (i,j) }
contains value k [AT mos¥ /\

1<9



S0? What's the Problem?

Tedious task; often /l,OO0,000's of clauses; A
repetitive; 100,000's of variables;
Bugs are hard to track;

Optimizations are costly /

Conertt | g > | NP

fCNF preprocessors are many: eg,\
Satelite, Coprocessor

But, these tools apply weak forms
of reasoning to cope with huge
CNF sizes. (users sometimes

: SAT in prefer to turn them off)
decoding g9
Answer | sois | | SATIG | P Y




Example: encoding Sudoku ~*®

NICTA

53 var 1..9: x11;
6 var 1..9: x12;
9 6
8 3 alldifferent ([x11, .. x1971);
4 1 alldifferent ([x21, ..,x29]);
7 6
6 8 x11 = 5;
5 x12 = 3;
719

Let the high level
structured instance drive
the CNF encoding

I

High level ‘
Instance




The Usual Approach
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Our Approach

C3

High level Instance




Our Approach

Cl C2 C3 High level Instance Cn

Equi-propagation is the process

S \/ of inferring equations implied

g e IPNT (PN by a "single” egnstraint.

/of the form X=L where L such X can be
is a constant or a literal: removed from
 X=Y, X=-Y, X=0, X=1

all constraints.

encode
ncode
ncode

e
e

owerful reasoning but on .
Z?Eﬂﬁlsmsransp?opabatlon based solver!

Core constraints: literal equations (complete solver is congruence closure)
Other constraints: infer new core constraints.




Equi-Propagation @ L

o _ NICTA
Infer equalities between literals and constants

Apply substitution to remove equated literals
E.g. D(x) =[0..4], D(y) = [0..4]

— Order encoding

— [x1,x2,x3,x4] [y1,y2,y3,y4] vi=(v=21i)
Constraint y # 2

—y2=y3

Constraint x + y = 3
—x4=0,y4=0,y3=1x1,y2=1x2,y1 =1x3

— [x1,x1,x3,0] [-x3,-x1,-x1,0]

Constraint 3x +4z + 9t = 3

31



Ben-Gurion Equi-Propagation Encoder

BEE encoder
Translates high level instance to CNF

Integers represented by order/value/binary
encoding
Equi propagation by

— Adhoc rules per constraint type
 fast, precise in practice

— Complete equi-propagation using SAT (?)
And adhoc partial evaluation rules

32



BEE Comparisons ®
« Balanced Incomplete Block Design

Compared with

— Sugar (CSP encoder)

— BEE minus equi-propagation + SatELite
instance BEE (SymB) Sugar (SymB) SATELITE (SymB)
[0, 0,7, k, Al comp  clauses SAT | comp  clauses SAT | comp  clauses SAT

(sec) (sec) | (sec) (sec) | (sec) (sec)

7,420, 180, 3, 60] 1.65 698579 1.73 | 12.01 2488136 13.24 1.67 802576  2.18
7,560, 240, 3, 80] 3.73 1211941 13.60 | 11.74 2753113 36.43 2.73 1397188  5.18
(12,132, 33, 3, 6] 0.95 180238  0.73 | 83.37 1332241 7.09 1.18 184764  0.57
[15,45,24, 8,12] 0.51 116016  8.46 4.24 466086 00 0.64 134146 o0
(15,70, 14, 3, 2] 0.56 81563  0.39 | 23.58 540089 1.87 1.02 79542 0.20
[16, 80, 15, 3, 2] 0.81 109442  0.56 | 64.81 623773  2.26 1.14 105242  0.35
[19,19,9,9, 4] 0.23 39931 0.09 2.27 125976  0.49 0.4 44714  0.09
[19,57,9,3,1] 0.34 113053  0.17 00 — — | 10.45 111869 0.14
[21,21,5,5,1] 0.02 0 0.00 | 31.91 3716 0.01 0.01 0 0.00
25,25,9,9, 3] 0.64 92059 1.33 | 42.65 569007  8.52 1.01 97623  8.93
25, 30,6, 5, 1] 0.10 24594  0.06 | 16.02 93388  0.42 1.2 23828  0.05
Total (sec) 36.66 > 722.93 > 219.14

33




BEE Comparison

* Applying SatELite on output of BEE

A\ /}

. YIKES!
— Doesn't shrink much, usually solves slower
instance BEE A SATELITE
comp  clauses vars SAT | comp  clauses vars SAT
(sec) (sec) | (sec) (sec)
Kg | 143 | 0.51 248558 5724 1.26 | 2.60 248250 5452 0.98
142 0.27 248414 5716 10.14 2.99 248107 5445 3.22
141 | 0.20 248254 5708 7.64 | 259 247947 5437 32.81
140 | 0.19 248078 5700 14.68 | 2.60 247771 5429 3.50
139 | 0.18 247886 5692 25.6 | 2.9 247579 = 5421 6.18
138 0.18 247678 5684 12.99 2.60 247371 5413 12.18
137 0.18 247454 5676 22.91 2.959 247147 5405 77.16
136 | 0.18 247214 5668 14.46 | 2.59 246907 5397 97.69
135 | 0.18 246958 5660  298.54 | 2.58 246651 5389  705.48
134 | 0.18 246686 5652 331.8 | 2.59 246379 5381 00




BEE Highlights De

NICTA
« Extremal Graph Theory

— Extremely challenging combinatorics problems

— Find the largest number of edges for a simple graph
with n nodes and no 3 or 4 cycles: f,(n)

— Huge amount of symmetry

« BEE solution

— Encode advanced symmetry breaking constraints

— Discovers two new values
. £,(31) =80, £,(32) = 85

 BEE is best where the Iinitial problem and
constraints fix/identify many variables

35
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Propagation vs CNF Encoding Je

NICTA

ngh Ievel encoding> CNF

- A Instance

e Encode and
SAT solve

* Propagate

\ Alternatives

h 4




Which is better?

* Experience with cardinality problems
« 501 instances of problems with a single

cardinality constraint

— unsat-based MAXSAT solving

Speed up if encoding
Sute | TO 4 2 15| Win
Card | 168 54 14 7| 243

1.5

Slow down if encoding
2 4 TO| win
24 215 12| 258

« 50% of instances encoding is better, 50% worse
 Why can propagation be superior?

38



Example: Cardinality constraints

e X1+ x2+x3+x4+x5+x6+ x/7+x8<3
* Propagator
— If 3 of {x1, ..., x8} are true, set the rest false.

* Encoding

— Cardinality or sorting network:
e« 221 =233=234=235=236=0

T —e2d Z9 o 21 0
To — 22 TZM 17 |g <23 >33 0
T3 — 3 210 {218 |[4 225 229 { 234 0
Ty — el §F12 227 T 231 %35 0
Ts &5 <13 o722 TZ30 236 0
Tg—eb T2’15 C19  {l1%24 232 o R37
T7 — 1 HZM IZ20 o226 238
228

T8 £8 216 !



Comparison: Encoding vs Propagation @

NICTA
* A (theory) propagator

— Lazily generates an encoding

— This encoding is partially stored in nogoods

— The encoding uses no auxiliary Boolean variables

— 2.1 » X; < k generates (n-k)"C, = O(n*) explanations
* |If the problem is UNSAT (or optimization)

— CP solver runtime 2 size of smallest resolution proof

— Cannot decide on auxiliary variables
« Exponentially larger proof

— Compare Z_, ., x; < k encoding is O(n log? k)
« But propagation is faster than encoding

40



Lazy Encoding e

. _ NICTA
* Choose at runtime between encoding and

propagation
 All constraints are initially propagators
* If a constraint generates many explanations

— Replace the propagator by an encoding
— At restart (just to make it simple)

* Policy: encode if either

— The number of different explanations is > 50% of the
encoding size

— More than 70% of explanations are new and > 5000

41



Lazy Encoding e

High level
Instance

* Propagate Solver

state

« Replace with
Encoding




Lazy Encoding results
 MSU4 results

Encoding
Propagation

Lazy
Encoding

<10s
5374
4322
5222

 Tomography

Encoding
Propagation

Lazy
Encoding

<10s

773
1457
1556

<30s
5525
4530
5479

<30s
1112
1748
1818

<60s
5578
4603
5585

<60s
1314
1858
1935

<120s
5621
4667
5636

<120s
1501
1962
1971

<300s
5659
4737
5666

<300s
1759
2014
2012

<600s
9677
4767
5679

<600s
1932
2021
2021

43



Lazy Encoding (JO®

. . NICTA
« Keep the structure during solving

— Use the structure to decide on solving method

« Almost always equals or exceeds the best of
— Propagation
— Encoding

* Obvious advantages when

— Some constraints are not/rarely involved in failure
* These are never encoded

44
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Lazy Clause Generation (LCG)

* A hybrid SAT and CP solving approach

* Add explanation and nogood learning to a
propagation based solver

« Key change
— Modify propagators to explain their inferences
— They become “theory propagators”

46



LCG in a Nutshell ()@

. . NICTA
* Integer variable x in /..u encoded as Booleans

—[x=d], dinl.u-1
—[x=d], dinl.u
» Dual representation of domain D(x)
« Restrict to atomic changes in domain (literals)

—x<d (itself)
—x2d ![x=<d-1] use [x 2 d] as shorthand
—x=d (itself)

—x#d ![x=d] use]lx#d]as shorthand

* Propagation is clause generation
—e.g. [x=<2] and x2 ymeans that [y< 2]
— clause [x < 2] =[y < 2]



(Original) LCG propagation example ®

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c
» Constraints:
—-z2y,b—>y#3,c—>y=23,c— X206,
—4x + 10y + 5z <71 (lin)

« EXxecution
[x25] lin © b boy#3: € coy>3 D(y) .y lin
......... \\ N . i st ettt e e e e
[y=9] : [y #3] = [y23] — [y=4] N
. [z= 4] —> false
%
[x26] —
cC— X226

1UIP nogood: ¢ A [y#3]=>false or [y#3]=!c

48



LCG propagation example e

« Variables: {x,v,z} D(v) = [0..6] Booleans b,c NICTZ

 Constraints:
—z2y,b—->y#3,c—>y=23,c— x26,
—4x + 10y + 5z <71 (lin)

 Backtrack

[x25] lin b boy#3
......... \\

ly<9] y#3] —>lc

1UIP nogood: ¢ A [y#3]=>false or [y#3]=!c

49



LCG is SMT

« Each CP propagator is a theory propagator h

* They operate on the shared Boolean
representation of integer (and other) variables

» But (at least for original LCG) each explanation
clause is also recorded

— Still useful for complex propagators where
explanation is expensive, also causes reprioritization

— Used for state-of-the-art scheduling resuilts.

50



LCG propagation example ®

 Execution
[x25] lin b boy#3: C coy=3 22y lin
................. . e T

ys8:  #3 1 [yz3]

[x 2 6]
v

C— X226

Lifted Explanation: y = 3 ANeagoedz &2 5] A[y=4] Alz= 3] 2 false

51



LCG propagation example

« Execution

[x = 5] lin b—y C c—oy zzy lin
................. [ SUUETUNURUY WUy YUNUUURRURRURRRURPPOD SURRPPORY 3
[y = 9] [y # 3] [y 2 3]
[z 2 4] false
[x = O]
\Z

Nogood: [x = 5] A [y = 4] =» false
1UIP Nogood: [x = 5] A [y = 4] = false
1UIP Nogood: [x 2 5] =2 [y < 3]

52



LCG propagation example

* Backjump

[x = 5] lin X=59y<3
................. B
[y = 9] [y = 3]

Nogood: [x = 5] A [y = 4] =» false

53



LCG is not SMT (Jeo

_ _ NICTA
 Essential differences

— LCG:

« focus on optimization
« communication by literals on domains

 global constraint propagators with explanation
— Capturing substructure

— SMT:

 focus on theorem proving + verification
« communication by theory constraints

 theory "propagators” that treat all similar constraints
simultaneously (e.g. difference logic, linear arithmetic)
— Capturing sub-theories



Lessons from LCG (Je®

. . NICTA
* Lazy literal generation

— Integer variable representation is generated only as
needed

* Encoding can be bad
— Even without the size blowup

* Programmed search

— For (many) problems default activity search is bad
* typically where we cannot prove optimality

55



Lazy Literal Generation

* For constraint problems over large domains lazy
literal generation is crucial

amaze fastfood filters league mspsp nonogram patt-set

Initial 8690 1043k 8204 341k 13534 448k 19916
Root 6409 729K 6944 211k 9779 364k 19795
Created 2214 9831 1310 967 6832 262k 15490
Percent 34% 1.3% 19% 0.45% 70% 2% 78%

proj-plan radiation shipshed solbat still-life tpp

Initial 18720 145k 2071k 12144 18947 19335
Root 18478 43144 2071k 9326 12737 18976
Created 5489 1993 12943 10398 3666 9232

Percent 30% 4.6% 0.62% 111% 29% 49%

56



Encoding versus Propagation [ J®

* Propagation can be superior
— Even if the encoding propagates as strongly
— And its size complexity is no higher than the propagator

« Example: multi-decision diagrams (n nodes)
— SAT encoding of MDD propagates equivalent (no bigger O(nd))
— Propagator uses structure of MDD (faster propagation)
— Intermediate variables don't help search (even though its VSIDS)

n| Tseitin fails| Equiv fails MDD fails
14 75.24 331k | 24.39 63k 5.59 51k
15| 366.03 1128k | 67.59 148k 7.86 65k

16 --- ---| 82.88 148k | 18.03 123k
17 --- --- | 183.28 276k | 68.32 381k
18 --- ---| 392.91 445k | 101.31 500k
19 --- --- - ---| 118.16 538k

20 | 384.99 1341k 57



Activity-based search is BAD o

« Car sequencing problem (production line
scheduling)

« Comparing different search strategies
— Static: selecting in order
— DomWDeg: weight variables appearing in constraints

that fail
— Impact: prioritising decisions that reduce domains
— VSIDS
Static DomWDeg Impact VSIDS
Time (s) 206.3 0.8 951.3 1522.2

Solved (70) 66 70 95 47

58



Hybrid Searches

 Most of our state-of-the-art results use

* Hybrid searches

— Problem specific objective based search
« To find good solutions early

— Switching to activity based search
« To prove optimality

« Sometimes alternating the two!
« Or throwing a weighted coin to decide which

59



LCG Successes e

_ NICTA
« Scheduling
— Resource Constrained Project Scheduling Problems
(RCPSP)

* (probably) the most studied scheduling problems
» LCG closed 71 open problems
» Solves more problems in 18s then previous SOTA in 1800s

— RCPSP/Max (more complex precedence constraints)
 LCG closed 578 open instances of 631

« LCG recreates or betters all best known solutions by any
method on 2340 instances except 3

— RCPSP/DC (discounted cashflow)

* Always finds solution on 19440 instances, optimal in all but
152 (versus 832 in previous SOTA)

 LCG is the SOTA complete method for this problem



LCG Successes

« Real World Application

— Carpet Cutting

« Complex packing problem

« Cut carpet pieces from a roll to minimize length

« Data from deployed solution

T

L

— Lazy Clause Generation Solution

*:]_:—‘

-

NICTA

o

* First approach to find and prove optimal solutions

« Faster than the current deployed solution
* Reduces waste by 35%



LCG Successes e

- NICTA
* MiniZinc Challenge

— comparing CP solvers on a series of challenging
problems

— Competitors
» CP solvers such as Gecode, Eclipse, SICstus Prolog
* MIP solvers CPLEX, Gurobi, SCIP (encoding by us)
» Decompositions to SMT and SAT solvers

— LCG solvers (from our group) were

» First (Chuffed) and Second (CPX) in all categories in 2011 and
2012

* First (Chuffed) in all categories in 2010
— SMT based approach (fzn2smt) Fourth behind Gecode

— lllustrates that the approach is strongly beneficial on a
wide range of problems
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MiniZinc (e

NICTA
* A solver independent modelling language for

combinatorial optimization problems
— Open source, developed since 2007
— Closest thing to a Constraint Programming standard

- Domains: Booleans, integers, floats, sets of
integers

» Globals:
— User defined predicates + functions

— Reflection functions
— Customizable library of global constraint definitions

* Features
— Annotations for adding non-declarative information

64



MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1l..m; % task per job
int: span; % max end time
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of wvar 0..span: s;
constraint forall (i in Job, j in 1..m-1)

(s[i,3]1 + dl[i,]] <= s[i,]j+1]);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
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MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=l..m; $ task —~—= - -*-
int: span; - Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of wvar 0..span: s;
constraint forall (i in Job, j in 1..m-1)
(s[i,j] + d[i,J] <= s[i,J+11);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
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MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n; % no © Dependent
int: m; set of int: Task=1..m; % task =~~~ =“-"
int: span; - Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of wvar 0..span: s;
constraint forall (i in Job, j in 1..m-1)
(s[i,j] + d[i,J] <= s[i,J+11);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
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MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n;

5 no - Dependent

int: m; set of int: Task=1..m; % task =~~~ =“-"
int: span; - Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; ,
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[i,j] + d[i,J] <= s[i,J+11);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
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MiniZinc Example: Jobshop Scheduling ®

[

no -~ Dependent

int: m; set of int: Task=1..m; % task —-—- =-%

int: span; Parameters
array|[Job, Task] of int: d;

int: n; set of int: Job=1..n;

array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[i,3]1 + dl[i,]] <= s[i,]j+1]);

constraint forall(k in Task)

(unary([s[1,7] | 1 in Job, 7J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,j] = k]));
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions



MiniZinc Example: Jobshop Scheduling ./ ®

int: n; set of int: Job=1..n;

no -~ Dependent

int: m; set of int: Task=1..m; % task =~~~ ~“-%
int: span; i Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[i,3] + dl[i,]] <= s[i,]j+1]);

constraint forall(k in Task)

(unary([s[1,7] | 1 in Job, 7J in Task
where mc[i,j] = k],  Constraints
[d[1,3] | 1 in Job, J in Task
where mc[i, ] = k1))
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions



MiniZinc Example: Jobshop Scheduling ®

int: n; set of int: Job=1..n;

no - Dependent

int: m; set of int: Task=1l..m; $ task —~-—= - -%

int: span; i Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[1,3] + d[1,3] <= s[1,3+1]):

constraint forall (k in Task) Global
(Unary ([sdaspgr=—r—ar—x1r- 000, ] IN TdsSK ‘= -
where mc[i,j] = k], Constraints
[d[1,3] | 1 in Job, J in Task
where mc[i, ] = k1))
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions



MiniZinc Example: Jobshop Scheduling ®

int: n; set of int: Job=1..n;

no - Dependent

int: m; set of int: Task=1l..m; $ task —~-—= - -%

int: span; i Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[1,3] + d[1,3] <= s[1,3+1]):

constraint forall(k in Task) Global
(Unary ([sdaspgr=—r—ar—x1r- 000, ] IN TdsSK ‘= -
: i where mc[i,]J] = k], '
ObJeCtlve _,31 | i in Job, j in Task constraints
where mc[i,j] = k1)),
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions



MiniZinc Example

Separate data file

n = 2; m= 2; span

d = [|315|6/2|]; mc =

 Flattened to FlatZinc

.10:

array[l..4] of var
var 5..15: obj;
int 1lin le([1, -17,
int lin le([1, -1]
unary([s[l],s[4]],
unary([sf[2],s[3]],
int maximum([I1,I2
var 5..15: I1; var
int lin eqgq([-1,1],
int lin eqg([-1,17,

0.

[3
L2
1,
5.
[11

10;

(11,212,111;
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User-defined constraint treatment ()@

.. NICTA
« Solver dependent rewriting

— E.g. replacing unary global by non-overlap disjunction
predicate unary(arrayl[int] of var int:s;
array[int] of 1int:d) =
forall(i,J 1n index set(s) where 1 < 3j)
(s[i] + d[i] <= s[J] \/ sl[j] + dl[J] <= sl[i]);
 Critical to support by many solvers

— CP solvers: Gecode, Eclipse, SICStus Prolog,
Bprolog, Choco, Mistral, Jacop, izplus, Chuffed, CPX,
lazyfd, g12-fd

— MIP solvers: SCIP, Cplex, Gurobi, Coin-OR-CBC
— SAT + SMT Solvers: fzntini, bee, minisatlD, fzn2smt
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libmzn

* A new open source framework: LLVM like
Direct interface to solvers and C++ API

Specialist transformations
— Booleanization

— Linearization User modelidata i
* A good modelling R B e O
Ianguage fOr globals.mzn i
— SMT solvers |
* Release

— September 2013




Conclusions (e

. . _ NICTA
« Combinatorial problems often include

— Substantial and well understood substructures

* Modelling should

— allow these substructures to be expressed
« Solving should
— allow these substructures to be taken advantage of

« Taking note of substructures can:

— Improve design models (better translation)
— Allow use to choose between encoding and propagation
— Create powerful dynamic encodings
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The Hard Word @

_ o NICTA
* If you want to compete with all optimization

technology
— Competition is on a high level model, not CNF

* Then ignoring the structure
— Will not compete!

e So remember

There are no CNF problems
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The future directions @

NICTA
 Details of how modern LCG solvers work

— WWW.CS.mu.oz.au/~pjs/papers/cpx.pdf

More about MiniZinc
— wWww.minizinc.org

* More about BEE

— http://amit.metodi.me/research/bee/
Structure-based extended resolution

— Advantages of encoding + propagation simultaneously
— http://arxiv.org/abs/1306.4418

Unsatisfiable cores for constraint programming
— Easy to translate UNSAT core methods from SAT
— http://arxiv.org/abs/1305.1690
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