NICTA There are no

CNF problems

Peter J. Stuckey and
countless others!

NICTA Funding and Supporting Members and Partners
" 4
« Australian Government Australian N%;
: = fEsr UNSW % | e «
Department of Broadband, Communications =29 University THECRNBRSTY OF N SOUTH WAL o | INVestment MELBOURKE
and the Digital Economy
. . THE UNIVERSITY OF 5 Yo QUT]| THE UNIVERSITY
Australian Research Council SYDNEY ‘Glg‘feer':lsrlnae":]‘: @”J &’.5@5‘&# .

g ‘OF QUEENSLAND
‘Queensland Uriversityof Technology

Conspirators

 |gnasi Abio, Ralph Becket, Sebastian Brand,
Geoffrey Chu, Michael Codish, Greg Duck, Nick
Downing, Thibaut Feydy, Graeme Gange, Vitaly
Lagoon, Amit Metodi, Alice Miller, Nick
Nethercote, Roberto Nieuwenhuis, Olga
Ohrimenko, Albert Oliveras, Patrick Prosser,
Enric Rodriguez Carbonell, Andreas Schultt,
Guido Tack, Mark Wallace

* All errors and outrageous lies are mine

Outline (e

. . NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

A famous problem (in CNF)

unknown problem
cnf 6 9

C
IS
1 20
3
5

O O O o O O

A famous problem (in CNF)

C unknown problem

p cnf 12 22

1230456078 9010 11 12 0
-1 -4 0 -1 -7 0 -1 -10 O

-4 -7 0 -4 -10 0 =7 =10 O
-2 -5 0 -2 -8 0 -2 -11 0
-5 -3 0 -5 -11 0 -8 -11 O
-3 -6 0 -3 -9 0 -3 -12 0
-6 -9 0 -0 =12 0 -9 -12 0

A famous problem (in MiniZinc)

int: n;
array[l..n] of var 1..n-1: Xx;

constraint alldifferent (x);

solve satisfy;

n = 4; $ data could be

$ 1n different file

A famous problem (in MiniZinc)

int: ny;

set of 1nt: Pigeon = 1..n;
set of 1nt: Hole = 1..n-1;
array[Pigeon] of var Hole: x;
constraint alldifferent (x);

solve satisfy;

n = 4; $ data could be

$ 1n different file

A famous problem (in SMT-LIB?)

declare—-fun
declare—-fun
declare—-fun

assert (and
distinct x1
distinct x2Z

(

(

(

(

((

((
(assert (and
((

(

(

(

(distinct x3

x1 () Int)

x2 () Int)

X3 () Int)

x4 () Int)

(< x1 4) (> x1 0)))
(< x2 4) (> x2 0)))
(< x3 4) (> x3 0)))
(< x4 4) (> x4 0)))
(distinct x1 x2)

X

di

3) (distinct x1 x4)
3) (distinct x2 x4)
4)

A famous problem (in SMT-LIB?)

(declare—-fun x1 () Int)
(declare—-fun x2 () Int)
(declare-fun x3 () Int)
(declare-fun x4 () Int)

(assert (and (< x1 4) (> x1 0)))
(assert (and (< x2 4) (> x2 0)))
(assert (and (< x3 4) (> x3 0)))
(assert (and (< x4 4) (> x4 0)))
(assert (alldifferent x1 x2 x3 x4))

Modelling and Solving Je

NICTA

R e R e S

L-----------------------------J

 The conceptual model

— A formal mathematical statement of the (simplified)
problem

* The design model
— In the form that can be handled by a solver

10

Modelling and Solving

Modelling and Solving in SAT e

NICTA

- - p-

I

12

Modelling and Solving in MiniZinc e

NICTA

[e e e e e

- i X -
Ik L
8 - 5
bA
/

e
33

L &8 &8 N _§ _§N _§ _§ _§ _§ 9§} _§ 1§ 2§} _§ @} _§8. /|
13

Outline @

. . NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

14

Propagation based solving (Je

: _ NICTA
» domain D maps var x to possible values D(x)

 propagator f.: D — D for constraint ¢
— monotonic decreasing function
— removes value which cannot be part of solution

* propagation solver D = solv(F,D)

— Repeatedly apply propagators f & F to D until (D) = D
forall fe F

* finite domain solving
— Add new constraint ¢, D’ = solv(F U {f_}, D)
— On failure backtrack and add not ¢
— Repeat until all variables fixed.

15

Propagation = Inference (Je

NICTA
« Example: z = y propagator f

— D(y) = {4,5,6}, D(z) = {0,1,2,3,4,5,6)

— f(D)(y) = {4,5,6}, (D)(z) = {4,5,6}

Domain Dis aformula: D = A, x & D(x)
Propagation

— DA c=2f(D)

On example

—ye{456} ANz=zy =z {4,5,6}
Separation:

— Core constraints (unary) A, x € S (complete solver)
— Inference of new core constraints from other constraints

16

Problem substructure @

_ NICTA
« Assignment substructure:

- alldifferent (x): maps each x to a different value
« Hamiltonian circuit substructure:
— circuit (next): next defines a Hamiltonian tour

 Resource utilization substructure

— cumulative (s, d, r, L) : tasks with starttime s,
duration d, and resource usage r, never use more
then L resources

» Packing substructure

- diff2(x,y,xd,yd) objects at (x.,y.) with size
(xd.,yd,) don’t overlap

17

FD propagation example

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c

* Constraints:

—-z2y,b—>y#3,c—>y=23,c— X206,

—4x + 10y + 5z <71 (lin)

 Example search

D(x)
D(y)
D(z)
D(b)
D(c)

x25 lin
5..6

0..6 0..5
0..6

0..1

0..1

b b—>y=/=3

0..2,4..5

c ¢c—>y23 c—>x26 z2y lin

6
4.5
4..6

O
O
O

18

FD propagation example

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c

e Constraints:

* Failure detected,
— backtrack and reverse last decision

D(x)
D(y)
D(z)
D(b)
D(c)

—-z2y,b—>y#3,c—>y=23,c— X206,

—4x+ 10y + 5z <71 (lin)

X295 lin
5..6
0..6 0..5
0..6
0..1
0..1

b

b—>y-'/=3

0..24.5

not ¢

(O
NICTA

19

FD propagation e

NICTA
« Strengths

— High level modelling

— Specialized global propagators capture substructure
« and all work together

— Programmable search

 \Weaknesses
— Weak autonomous search
— Optimization by repeated satisfaction
— Small models can be intractable

20

Outline (e

. . NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

21

Outline Yo

. . NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

22

23

:

Better encoding to SAT

L B 8 N _§ _§N _§ _§N_ _§__H§ N N .-

gy P

Better CNF encoding ®

* Not all SAT encodings are equal

 Significant research encoding constraints to SAT
— Atmostone
— Cardinality constraints
— Psuedo-Boolean constraints
— Integer variables

« Significant research on “improving” a CNF model
after encoding: preprocessing.

24

Example: encoding Sudoku

o
w
~J

cells one(Xii1,...,Xij9) A

98] o1]
8 6
. 3|{ rows > /\one Zlk,... Xiok) N

§eN

6 2|o ik /\)
al1l9 5 bOX@S One

- o “unit clauses' /\ inputs
At least
¥ one(by,...,by,) \/bn A
ik = cell (i,j) }
contains value k [AT mos¥ /\

1<9

S0? What's the Problem?

Tedious task; often /l,OO0,000's of clauses; A
repetitive; 100,000's of variables;
Bugs are hard to track;

Optimizations are costly /

Conertt | g > | NP

fCNF preprocessors are many: eg,\
Satelite, Coprocessor

But, these tools apply weak forms
of reasoning to cope with huge
CNF sizes. (users sometimes

: SAT in prefer to turn them off)
decoding g9
Answer | sois | | SATIG | P Y

Example: encoding Sudoku ~*®

NICTA

53 var 1..9: x11;
6 var 1..9: x12;
9 6
8 3 alldifferent ([x11, .. x1971);
4 1 alldifferent ([x21, ..,x29]);
7 6
6 8 x11 = 5;
5 x12 = 3;
719

Let the high level
structured instance drive
the CNF encoding

I

High level ‘
Instance

The Usual Approach

2p0odJu? v

2podu?2

C2 C3 High level Instance Cn

£l

2podou?2

)
pa V
)

CNF

| :o:cu_u,__n_e_v

Our Approach

C3

High level Instance

Our Approach

Cl C2 C3 High level Instance Cn

Equi-propagation is the process

S \/ of inferring equations implied

g e IPNT (PN by a "single” egnstraint.

/of the form X=L where L such X can be
is a constant or a literal: removed from
 X=Y, X=-Y, X=0, X=1

all constraints.

encode
ncode
ncode

e
e

owerful reasoning but on .
Z?Eﬂﬁlsmsransp?opabatlon based solver!

Core constraints: literal equations (complete solver is congruence closure)
Other constraints: infer new core constraints.

Equi-Propagation @ L

o _ NICTA
Infer equalities between literals and constants

Apply substitution to remove equated literals
E.g. D(x) =[0..4], D(y) = [0..4]

— Order encoding

— [x1,x2,x3,x4] [y1,y2,y3,y4] vi=(v=21i)
Constraint y # 2

—y2=y3

Constraint x + y = 3
—x4=0,y4=0,y3=1x1,y2=1x2,y1 =1x3

— [x1,x1,x3,0] [-x3,-x1,-x1,0]

Constraint 3x +4z + 9t = 3

31

Ben-Gurion Equi-Propagation Encoder

BEE encoder
Translates high level instance to CNF

Integers represented by order/value/binary
encoding
Equi propagation by

— Adhoc rules per constraint type
 fast, precise in practice

— Complete equi-propagation using SAT (?)
And adhoc partial evaluation rules

32

BEE Comparisons ®
« Balanced Incomplete Block Design

Compared with

— Sugar (CSP encoder)

— BEE minus equi-propagation + SatELite
instance BEE (SymB) Sugar (SymB) SATELITE (SymB)
[0, 0,7, k, Al comp clauses SAT | comp clauses SAT | comp clauses SAT

(sec) (sec) | (sec) (sec) | (sec) (sec)

7,420, 180, 3, 60] 1.65 698579 1.73 | 12.01 2488136 13.24 1.67 802576 2.18
7,560, 240, 3, 80] 3.73 1211941 13.60 | 11.74 2753113 36.43 2.73 1397188 5.18
(12,132, 33, 3, 6] 0.95 180238 0.73 | 83.37 1332241 7.09 1.18 184764 0.57
[15,45,24, 8,12] 0.51 116016 8.46 4.24 466086 00 0.64 134146 o0
(15,70, 14, 3, 2] 0.56 81563 0.39 | 23.58 540089 1.87 1.02 79542 0.20
[16, 80, 15, 3, 2] 0.81 109442 0.56 | 64.81 623773 2.26 1.14 105242 0.35
[19,19,9,9, 4] 0.23 39931 0.09 2.27 125976 0.49 0.4 44714 0.09
[19,57,9,3,1] 0.34 113053 0.17 00 — — | 10.45 111869 0.14
[21,21,5,5,1] 0.02 0 0.00 | 31.91 3716 0.01 0.01 0 0.00
25,25,9,9, 3] 0.64 92059 1.33 | 42.65 569007 8.52 1.01 97623 8.93
25, 30,6, 5, 1] 0.10 24594 0.06 | 16.02 93388 0.42 1.2 23828 0.05
Total (sec) 36.66 > 722.93 > 219.14

33

BEE Comparison

* Applying SatELite on output of BEE

A\ /}

. YIKES!
— Doesn't shrink much, usually solves slower
instance BEE A SATELITE
comp clauses vars SAT | comp clauses vars SAT
(sec) (sec) | (sec) (sec)
Kg | 143 | 0.51 248558 5724 1.26 | 2.60 248250 5452 0.98
142 0.27 248414 5716 10.14 2.99 248107 5445 3.22
141 | 0.20 248254 5708 7.64 | 259 247947 5437 32.81
140 | 0.19 248078 5700 14.68 | 2.60 247771 5429 3.50
139 | 0.18 247886 5692 25.6 | 2.9 247579 = 5421 6.18
138 0.18 247678 5684 12.99 2.60 247371 5413 12.18
137 0.18 247454 5676 22.91 2.959 247147 5405 77.16
136 | 0.18 247214 5668 14.46 | 2.59 246907 5397 97.69
135 | 0.18 246958 5660 298.54 | 2.58 246651 5389 705.48
134 | 0.18 246686 5652 331.8 | 2.59 246379 5381 00

BEE Highlights De

NICTA
« Extremal Graph Theory

— Extremely challenging combinatorics problems

— Find the largest number of edges for a simple graph
with n nodes and no 3 or 4 cycles: f,(n)

— Huge amount of symmetry

« BEE solution

— Encode advanced symmetry breaking constraints

— Discovers two new values
. £,(31) =80, £,(32) = 85

 BEE is best where the Iinitial problem and
constraints fix/identify many variables

35

Outline (1@

, _ NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

36

Propagation vs CNF Encoding Je

NICTA

ngh Ievel encoding> CNF

- A Instance

e Encode and
SAT solve

* Propagate

\ Alternatives

h 4

Which is better?

* Experience with cardinality problems
« 501 instances of problems with a single

cardinality constraint

— unsat-based MAXSAT solving

Speed up if encoding
Sute | TO 4 2 15| Win
Card | 168 54 14 7| 243

1.5

Slow down if encoding
2 4 TO| win
24 215 12| 258

« 50% of instances encoding is better, 50% worse
 Why can propagation be superior?

38

Example: Cardinality constraints

e X1+ x2+x3+x4+x5+x6+ x/7+x8<3
* Propagator
— If 3 of {x1, ..., x8} are true, set the rest false.

* Encoding

— Cardinality or sorting network:
e« 221 =233=234=235=236=0

T —e2d Z9 o 21 0
To — 22 TZM 17 |g <23 >33 0
T3 — 3 210 {218 |[4 225 229 { 234 0
Ty — el §F12 227 T 231 %35 0
Ts &5 <13 o722 TZ30 236 0
Tg—eb T2’15 C19 {l1%24 232 o R37
T7 — 1 HZM IZ20 o226 238
228

T8 £8 216 !

Comparison: Encoding vs Propagation @

NICTA
* A (theory) propagator

— Lazily generates an encoding

— This encoding is partially stored in nogoods

— The encoding uses no auxiliary Boolean variables

— 2.1 » X; < k generates (n-k)"C, = O(n*) explanations
* |If the problem is UNSAT (or optimization)

— CP solver runtime 2 size of smallest resolution proof

— Cannot decide on auxiliary variables
« Exponentially larger proof

— Compare Z_, ., x; < k encoding is O(n log? k)
« But propagation is faster than encoding

40

Lazy Encoding e

. _ NICTA
* Choose at runtime between encoding and

propagation
 All constraints are initially propagators
* If a constraint generates many explanations

— Replace the propagator by an encoding
— At restart (just to make it simple)

* Policy: encode if either

— The number of different explanations is > 50% of the
encoding size

— More than 70% of explanations are new and > 5000

41

Lazy Encoding e

High level
Instance

* Propagate Solver

state

« Replace with
Encoding

Lazy Encoding results
 MSU4 results

Encoding
Propagation

Lazy
Encoding

<10s
5374
4322
5222

 Tomography

Encoding
Propagation

Lazy
Encoding

<10s

773
1457
1556

<30s
5525
4530
5479

<30s
1112
1748
1818

<60s
5578
4603
5585

<60s
1314
1858
1935

<120s
5621
4667
5636

<120s
1501
1962
1971

<300s
5659
4737
5666

<300s
1759
2014
2012

<600s
9677
4767
5679

<600s
1932
2021
2021

43

Lazy Encoding (JO®

. . NICTA
« Keep the structure during solving

— Use the structure to decide on solving method

« Almost always equals or exceeds the best of
— Propagation
— Encoding

* Obvious advantages when

— Some constraints are not/rarely involved in failure
* These are never encoded

44

Outline (1@

, _ NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

45

Lazy Clause Generation (LCG)

* A hybrid SAT and CP solving approach

* Add explanation and nogood learning to a
propagation based solver

« Key change
— Modify propagators to explain their inferences
— They become “theory propagators”

46

LCG in a Nutshell ()@

. . NICTA
* Integer variable x in /..u encoded as Booleans

—[x=d], dinl.u-1
—[x=d], dinl.u
» Dual representation of domain D(x)
« Restrict to atomic changes in domain (literals)

—x<d (itself)
—x2d ![x=<d-1] use [x 2 d] as shorthand
—x=d (itself)

—x#d ![x=d] use]lx#d]as shorthand

* Propagation is clause generation
—e.g. [x=<2] and x2 ymeans that [y< 2]
— clause [x < 2] =[y < 2]

(Original) LCG propagation example ®

« Variables: {x,y,z} D(v) = [0..6] Booleans b,c
» Constraints:
—-z2y,b—>y#3,c—>y=23,c— X206,
—4x + 10y + 5z <71 (lin)

« EXxecution
[x25] lin © b boy#3: € coy>3 D(y) .y lin
......... \\ N . i st ettt e e e e
[y=9] : [y #3] = [y23] — [y=4] N
. [z= 4] —> false
%
[x26] —
cC— X226

1UIP nogood: ¢ A [y#3]=>false or [y#3]=!c

48

LCG propagation example e

« Variables: {x,v,z} D(v) = [0..6] Booleans b,c NICTZ

 Constraints:
—z2y,b—->y#3,c—>y=23,c— x26,
—4x + 10y + 5z <71 (lin)

 Backtrack

[x25] lin b boy#3
......... \\

ly<9] y#3] —>lc

1UIP nogood: ¢ A [y#3]=>false or [y#3]=!c

49

LCG is SMT

« Each CP propagator is a theory propagator h

* They operate on the shared Boolean
representation of integer (and other) variables

» But (at least for original LCG) each explanation
clause is also recorded

— Still useful for complex propagators where
explanation is expensive, also causes reprioritization

— Used for state-of-the-art scheduling resuilts.

50

LCG propagation example ®

 Execution
[x25] lin b boy#3: C coy=3 22y lin
................. . e T

ys8: #3 1 [yz3]

[x 2 6]
v

C— X226

Lifted Explanation: y = 3 ANeagoedz &2 5] A[y=4] Alz= 3] 2 false

51

LCG propagation example

« Execution

[x = 5] lin b—y C c—oy zzy lin
................. [SUUETUNURUY WUy YUNUUURRURRURRRURPPOD SURRPPORY 3
[y = 9] [y # 3] [y 2 3]
[z 2 4] false
[x = O]
\Z

Nogood: [x = 5] A [y = 4] =» false
1UIP Nogood: [x = 5] A [y = 4] = false
1UIP Nogood: [x 2 5] =2 [y < 3]

52

LCG propagation example

* Backjump

[x = 5] lin X=59y<3
................. B
[y = 9] [y = 3]

Nogood: [x = 5] A [y = 4] =» false

53

LCG is not SMT (Jeo

_ _ NICTA
 Essential differences

— LCG:

« focus on optimization
« communication by literals on domains

 global constraint propagators with explanation
— Capturing substructure

— SMT:

 focus on theorem proving + verification
« communication by theory constraints

 theory "propagators” that treat all similar constraints
simultaneously (e.g. difference logic, linear arithmetic)
— Capturing sub-theories

Lessons from LCG (Je®

. . NICTA
* Lazy literal generation

— Integer variable representation is generated only as
needed

* Encoding can be bad
— Even without the size blowup

* Programmed search

— For (many) problems default activity search is bad
* typically where we cannot prove optimality

55

Lazy Literal Generation

* For constraint problems over large domains lazy
literal generation is crucial

amaze fastfood filters league mspsp nonogram patt-set

Initial 8690 1043k 8204 341k 13534 448k 19916
Root 6409 729K 6944 211k 9779 364k 19795
Created 2214 9831 1310 967 6832 262k 15490
Percent 34% 1.3% 19% 0.45% 70% 2% 78%

proj-plan radiation shipshed solbat still-life tpp

Initial 18720 145k 2071k 12144 18947 19335
Root 18478 43144 2071k 9326 12737 18976
Created 5489 1993 12943 10398 3666 9232

Percent 30% 4.6% 0.62% 111% 29% 49%

56

Encoding versus Propagation [J®

* Propagation can be superior
— Even if the encoding propagates as strongly
— And its size complexity is no higher than the propagator

« Example: multi-decision diagrams (n nodes)
— SAT encoding of MDD propagates equivalent (no bigger O(nd))
— Propagator uses structure of MDD (faster propagation)
— Intermediate variables don't help search (even though its VSIDS)

n| Tseitin fails| Equiv fails MDD fails
14 75.24 331k | 24.39 63k 5.59 51k
15| 366.03 1128k | 67.59 148k 7.86 65k

16 --- ---| 82.88 148k | 18.03 123k
17 --- --- | 183.28 276k | 68.32 381k
18 --- ---| 392.91 445k | 101.31 500k
19 --- --- - ---| 118.16 538k

20 | 384.99 1341k 57

Activity-based search is BAD o

« Car sequencing problem (production line
scheduling)

« Comparing different search strategies
— Static: selecting in order
— DomWDeg: weight variables appearing in constraints

that fail
— Impact: prioritising decisions that reduce domains
— VSIDS
Static DomWDeg Impact VSIDS
Time (s) 206.3 0.8 951.3 1522.2

Solved (70) 66 70 95 47

58

Hybrid Searches

 Most of our state-of-the-art results use

* Hybrid searches

— Problem specific objective based search
« To find good solutions early

— Switching to activity based search
« To prove optimality

« Sometimes alternating the two!
« Or throwing a weighted coin to decide which

59

LCG Successes e

_ NICTA
« Scheduling
— Resource Constrained Project Scheduling Problems
(RCPSP)

* (probably) the most studied scheduling problems
» LCG closed 71 open problems
» Solves more problems in 18s then previous SOTA in 1800s

— RCPSP/Max (more complex precedence constraints)
 LCG closed 578 open instances of 631

« LCG recreates or betters all best known solutions by any
method on 2340 instances except 3

— RCPSP/DC (discounted cashflow)

* Always finds solution on 19440 instances, optimal in all but
152 (versus 832 in previous SOTA)

 LCG is the SOTA complete method for this problem

LCG Successes

« Real World Application

— Carpet Cutting

« Complex packing problem

« Cut carpet pieces from a roll to minimize length

« Data from deployed solution

T

L

— Lazy Clause Generation Solution

*:]_:—‘

-

NICTA

o

* First approach to find and prove optimal solutions

« Faster than the current deployed solution
* Reduces waste by 35%

LCG Successes e

- NICTA
* MiniZinc Challenge

— comparing CP solvers on a series of challenging
problems

— Competitors
» CP solvers such as Gecode, Eclipse, SICstus Prolog
* MIP solvers CPLEX, Gurobi, SCIP (encoding by us)
» Decompositions to SMT and SAT solvers

— LCG solvers (from our group) were

» First (Chuffed) and Second (CPX) in all categories in 2011 and
2012

* First (Chuffed) in all categories in 2010
— SMT based approach (fzn2smt) Fourth behind Gecode

— lllustrates that the approach is strongly beneficial on a
wide range of problems

Outline (Yo

. . NICTA
* Modelling and solving

Propagation based solving

The advantages of keeping structure

— Better (static) CNF encoding
— Dynamic choice: propagation versus CNF encoding
— Propagation with learning (Lazy Clause Generation)

MiniZinc
Conclusion

63

MiniZinc (e

NICTA
* A solver independent modelling language for

combinatorial optimization problems
— Open source, developed since 2007
— Closest thing to a Constraint Programming standard

- Domains: Booleans, integers, floats, sets of
integers

» Globals:
— User defined predicates + functions

— Reflection functions
— Customizable library of global constraint definitions

* Features
— Annotations for adding non-declarative information

64

MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1l..m; % task per job
int: span; % max end time
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of wvar 0..span: s;
constraint forall (i in Job, j in 1..m-1)

(s[i,3]1 + dl[i,]] <= s[i,]j+1]);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
65

MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=l..m; $ task —~—= - -*-
int: span; - Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of wvar 0..span: s;
constraint forall (i in Job, j in 1..m-1)
(s[i,j] + d[i,J] <= s[i,J+11);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
66

MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n; % no © Dependent
int: m; set of int: Task=1..m; % task =~~~ =“-"
int: span; - Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc;
array|[Job, Task] of wvar 0..span: s;
constraint forall (i in Job, j in 1..m-1)
(s[i,j] + d[i,J] <= s[i,J+11);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: obj] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
67

MiniZinc Example: Jobshop Scheduling

int: n; set of int: Job=1..n;

5 no - Dependent

int: m; set of int: Task=1..m; % task =~~~ =“-"
int: span; - Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; ,
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[i,j] + d[i,J] <= s[i,J+11);

constraint forall(k in Task)

(unary([s[1,3] | 1 in Job, J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,]J] = k1))
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;
68

MiniZinc Example: Jobshop Scheduling ®

[

no -~ Dependent

int: m; set of int: Task=1..m; % task —-—- =-%

int: span; Parameters
array|[Job, Task] of int: d;

int: n; set of int: Job=1..n;

array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[i,3]1 + dl[i,]] <= s[i,]j+1]);

constraint forall(k in Task)

(unary([s[1,7] | 1 in Job, 7J in Task
where mc[1,3] = k],
[d[1,3] | 1 in Job, J in Task
where mc[i,j] = k]));
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions

MiniZinc Example: Jobshop Scheduling ./ ®

int: n; set of int: Job=1..n;

no -~ Dependent

int: m; set of int: Task=1..m; % task =~~~ ~“-%
int: span; i Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[i,3] + dl[i,]] <= s[i,]j+1]);

constraint forall(k in Task)

(unary([s[1,7] | 1 in Job, 7J in Task
where mc[i,j] = k], Constraints
[d[1,3] | 1 in Job, J in Task
where mc[i,] = k1))
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions

MiniZinc Example: Jobshop Scheduling ®

int: n; set of int: Job=1..n;

no - Dependent

int: m; set of int: Task=1l..m; $ task —~-—= - -%

int: span; i Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[1,3] + d[1,3] <= s[1,3+1]):

constraint forall (k in Task) Global
(Unary ([sdaspgr=—r—ar—x1r- 000,] IN TdsSK ‘= -
where mc[i,j] = k], Constraints
[d[1,3] | 1 in Job, J in Task
where mc[i,] = k1))
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions

MiniZinc Example: Jobshop Scheduling ®

int: n; set of int: Job=1..n;

no - Dependent

int: m; set of int: Task=1l..m; $ task —~-—= - -%

int: span; i Parameters
array|[Job, Task] of int: d;
array|[Job, Task] of Task: mc; _
array|[Job, Task] of wvar 0..span: s; Variables
constraint forall (i in Job, j in 1..m-1)

(s[1,3] + d[1,3] <= s[1,3+1]):

constraint forall(k in Task) Global
(Unary ([sdaspgr=—r—ar—x1r- 000,] IN TdsSK ‘= -
: i where mc[i,]J] = k], '
ObJeCtlve _,31 | i in Job, j in Task constraints
where mc[i,j] = k1)),
var int: ob] = max([s[i,m] + d[i,m] | 1 in Job]);

solve minimize obj;

Comprehensions

MiniZinc Example

Separate data file

n = 2; m= 2; span

d = [|315|6/2|]; mc =

 Flattened to FlatZinc

.10:

array[l..4] of var
var 5..15: obj;
int 1lin le([1, -17,
int lin le([1, -1]
unary([s[l],s[4]],
unary([sf[2],s[3]],
int maximum([I1,I2
var 5..15: I1; var
int lin eqgq([-1,1],
int lin eqg([-1,17,

0.

[3
L2
1,
5.
[11

10;

(11,212,111;

73

User-defined constraint treatment ()@

.. NICTA
« Solver dependent rewriting

— E.g. replacing unary global by non-overlap disjunction
predicate unary(arrayl[int] of var int:s;
array[int] of 1int:d) =
forall(i,J 1n index set(s) where 1 < 3j)
(s[i] + d[i] <= s[J] \/ sl[j] + dl[J] <= sl[i]);
 Critical to support by many solvers

— CP solvers: Gecode, Eclipse, SICStus Prolog,
Bprolog, Choco, Mistral, Jacop, izplus, Chuffed, CPX,
lazyfd, g12-fd

— MIP solvers: SCIP, Cplex, Gurobi, Coin-OR-CBC
— SAT + SMT Solvers: fzntini, bee, minisatlD, fzn2smt

74

libmzn

* A new open source framework: LLVM like
Direct interface to solvers and C++ API

Specialist transformations
— Booleanization

— Linearization User modelidata i
* A good modelling R B e O
Ianguage fOr globals.mzn i
— SMT solvers |
* Release

— September 2013

Conclusions (e

. . _ NICTA
« Combinatorial problems often include

— Substantial and well understood substructures

* Modelling should

— allow these substructures to be expressed
« Solving should
— allow these substructures to be taken advantage of

« Taking note of substructures can:

— Improve design models (better translation)
— Allow use to choose between encoding and propagation
— Create powerful dynamic encodings

76

The Hard Word @

_ o NICTA
* If you want to compete with all optimization

technology
— Competition is on a high level model, not CNF

* Then ignoring the structure
— Will not compete!

e So remember

There are no CNF problems

77

The future directions @

NICTA
 Details of how modern LCG solvers work

— WWW.CS.mu.oz.au/~pjs/papers/cpx.pdf

More about MiniZinc
— wWww.minizinc.org

* More about BEE

— http://amit.metodi.me/research/bee/
Structure-based extended resolution

— Advantages of encoding + propagation simultaneously
— http://arxiv.org/abs/1306.4418

Unsatisfiable cores for constraint programming
— Easy to translate UNSAT core methods from SAT
— http://arxiv.org/abs/1305.1690

78

