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Outline 
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•  Propagation based solving 
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–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 
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A famous problem (in CNF) 
c unknown problem 
p cnf 6 9 
1 2 0 
3 4 0 
5 6 0 
-1 -3 0 
-1 -5 0 
-3 -5 0 
-2 -4 0 
-2 -6 0 
-4 -6 0 
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A famous problem (in CNF) 
c unknown problem 
p cnf 12 22 

1 2 3 0 4 5 6 0 7 8 9 0 10 11 12 0 

-1 -4 0 -1 -7 0 -1 -10 0  

-4 -7 0 -4 -10 0 -7 -10 0 

-2 -5 0 -2 -8 0 -2 -11 0 

-5 -8 0 -5 -11 0 -8 -11 0 

-3 -6 0 -3 -9 0 -3 -12 0 

-6 -9 0 -6 -12 0 -9 -12 0 
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A famous problem (in MiniZinc) 
int: n; 
array[1..n] of var 1..n-1: x; 

constraint alldifferent(x); 

solve satisfy;  

 

n = 4;   % data could be  

         % in different file 
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A famous problem (in MiniZinc) 
int: n; 
set of int: Pigeon = 1..n; 

set of int: Hole = 1..n-1; 

array[Pigeon] of var Hole: x; 

constraint alldifferent(x); 

solve satisfy;  

 

n = 4;   % data could be  

         % in different file 
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A famous problem (in SMT-LIB?) 
(declare-fun x1 () Int) 
(declare-fun x2 () Int) 
(declare-fun x3 () Int) 
(declare-fun x4 () Int) 
(assert (and (< x1 4) (> x1 0))) 
(assert (and (< x2 4) (> x2 0))) 
(assert (and (< x3 4) (> x3 0))) 
(assert (and (< x4 4) (> x4 0))) 
(assert (and (distinct x1 x2) 
(distinct x1 x3) (distinct x1 x4) 
(distinct x2 x3) (distinct x2 x4) 
(distinct x3 x4)) 
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A famous problem (in SMT-LIB?) 
(declare-fun x1 () Int) 
(declare-fun x2 () Int) 

(declare-fun x3 () Int) 

(declare-fun x4 () Int) 

(assert (and (< x1 4) (> x1 0))) 

(assert (and (< x2 4) (> x2 0))) 

(assert (and (< x3 4) (> x3 0))) 

(assert (and (< x4 4) (> x4 0))) 

(assert (alldifferent x1 x2 x3 x4))  
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Modelling and Solving 

•  The conceptual model 
–  A formal mathematical statement of the (simplified) 

problem 
•  The design model 

–  In the form that can be handled by a solver 
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Modelling and Solving 
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Modelling and Solving in SAT 
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Modelling and Solving in MiniZinc 
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Outline 
•  Modelling and solving 
•  Propagation based solving 
•  The advantages of keeping structure 

–  Better (static) CNF encoding 
–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 

•  MiniZinc 
•  Conclusion 
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Propagation based solving 
•  domain D maps var x to possible values D(x) 
•  propagator fc: D → D for constraint c 

–  monotonic decreasing function 
–  removes value which cannot be part of solution 

•  propagation solver D = solv(F,D) 
–  Repeatedly apply propagators f ∈ F to D until f(D) = D 

for all f ∈ F  
•  finite domain solving 

–  Add new constraint c, D’ = solv(F U {fc}, D) 
–  On failure backtrack and add not c 
–  Repeat until all variables fixed. 
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Propagation = Inference 
•  Example: z ≥ y propagator f 

–  D(y) = {4,5,6}, D(z) = {0,1,2,3,4,5,6} 
–  f(D)(y) = {4,5,6}, f(D)(z) = {4,5,6} 

•  Domain D is a formula: D  =  ∧x  x ∈ D(x) 
•  Propagation 

–   D ∧	
 c è fc(D) 
•  On example 

–  y ∈ {4,5,6} ∧ z ≥ y  è z ∈ {4,5,6}  
•  Separation: 

–  Core constraints (unary) ∧x x ∈ S (complete solver) 
–  Inference of new core constraints from other constraints  
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Problem substructure 
•  Assignment substructure: 

–  alldifferent(x): maps each x to a different value 

•  Hamiltonian circuit substructure: 
–  circuit(next): next defines a Hamiltonian tour 

•  Resource utilization substructure 
–  cumulative(s,d,r,L): tasks with starttime s, 

duration d, and resource usage r, never use more 
then L resources 

•  Packing substructure 
–  diff2(x,y,xd,yd) objects at (xi,yi) with size 

(xdi,ydi) don’t overlap 
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FD propagation example 
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c 
•  Constraints:  

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,  
–  4x + 10y + 5z ≤ 71 (lin) 

•  Example search 

18 

  x ≥ 5 lin b b → y ≠ 3 c c → y ≥ 3 c → x ≥ 6 z ≥ y lin 
D(x) 5..6 6  
D(y) 0..6 0..5 0..2,4..5 4..5  
D(z) 0..6 4..6  
D(b) 0..1 1 
D(c) 0..1 1 
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FD propagation example 
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c 
•  Constraints:  

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,  
–  4x + 10y + 5z ≤ 71 (lin) 

•  Failure detected,  
–  backtrack and reverse last decision 
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  x ≥ 5 lin b b → y ≠ 3 not c 
D(x) 5..6 
D(y) 0..6 0..5 0..2,4..5 
D(z) 0..6 
D(b) 0..1 1 
D(c) 0..1 0 
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FD propagation 
•  Strengths 

–  High level modelling 
–  Specialized global propagators capture substructure 

•  and all work together 

–  Programmable search 

•  Weaknesses 
–  Weak autonomous search 
–  Optimization by repeated satisfaction 
–  Small models can be intractable 

20 



NICTA Copyright 2012 From imagination to impact 

Outline 
•  Modelling and solving 
•  Propagation based solving 
•  The advantages of keeping structure 

–  Better (static) CNF encoding 
–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 

•  MiniZinc 
•  Conclusion 
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Outline 
•  Modelling and solving 
•  Propagation based solving 
•  The advantages of keeping structure 

–  Better (static) CNF encoding 
–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 

•  MiniZinc 
•  Conclusion 
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Better encoding to SAT 
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Better CNF encoding 
•  Not all SAT encodings are equal 
•  Significant research encoding constraints to SAT 

–  Atmostone 
–  Cardinality constraints 
–  Psuedo-Boolean constraints 
–  Integer variables 

•  Significant research on “improving” a CNF model 
after encoding: preprocessing. 
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Example: encoding Sudoku	


        = cell (i,j)   
contains value k 

 
 
 

cells	


rows	


columns	


boxes	


“unit clauses”	


At least	


At most	
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So? What’s the Problem?	


Conceptu
al Model 

Answer 

CNF 

SAT ’ing 
Assignm. 

encoding	


decoding	


sat solving	


Tedious task; often 
repetitive;  	


1,000,000’s of clauses; 
100,000’s of variables; 
Bugs are hard to track; 
Optimizations are costly 	


CNF preprocessors are many: eg,  
Satelite, Coprocessor 
 
But, these tools  apply weak forms 
of  reasoning to cope with huge 
CNF sizes. (users sometimes 
prefer to turn them off)	
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Example: encoding Sudoku	


Conceptual 
Model CNF encoding	


High level 
Instance encoding	


var 1..9: x11; 
var 1..9: x12;  
… 

alldifferent([x11, … x19]); 
alldifferent([x21, …,x29]); 
… 

x11 = 5; 
x12 = 3;  
… 

Problem 
Data 

Let the high level 
structured instance drive 
the CNF encoding	
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of the form  X=L  where  L 
is a constant or a literal: 
X=Y, X= -Y, X=0, X=1 

                       High level Instance C1	
 C2	
 C3	
 Cn	

en

co
de
	


CNF 

Our Approach	


en
co

de
	


en
co

de
	


CNF CNF 

Equi-propagation is the process  
of inferring equations implied 
by a “single” constraint.	


such X can be 
removed from 
all constraints. 

 
	


more powerful reasoning but on 
smaller CNF portions	
This is a propagation based solver! 

Core constraints: literal equations  (complete solver is congruence closure) 
Other constraints: infer new core constraints. 
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Equi-Propagation 
•  Infer equalities between literals and constants 
•  Apply substitution to remove equated literals 
•  E.g. D(x) = [0..4], D(y) = [0..4] 

–  Order encoding 
–  [x1,x2,x3,x4]     [y1,y2,y3,y4]    vi = (v ≥ i) 

•  Constraint y ≠ 2 
–  y2 = y3 

•  Constraint x + y = 3 
–  x4 = 0, y4 = 0, y3 = !x1, y2 = !x2, y1 = !x3 
–  [x1,x1,x3,0]      [-x3,-x1,-x1,0]  

•  Constraint 3x + 4z + 9t ≥ 3 
31 
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Ben-Gurion Equi-Propagation Encoder 
•  BEE encoder 
•  Translates high level instance to CNF 
•  Integers represented by order/value/binary 

encoding 
•  Equi propagation by 

–  Adhoc rules per constraint type  
•  fast, precise in practice 

–  Complete equi-propagation using SAT (?) 

•  And adhoc partial evaluation rules 

32 
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BEE Comparisons 

33 

•  Balanced Incomplete Block Design 
•  Compared with  

–  Sugar (CSP encoder)  
–  BEE minus equi-propagation + SatELite   

Boolean Equi-propagation

Figure 20: BIBD symmetry breaking.

The naive model for a BIBD instance [v, b, r, k,�] introduces the following constraints
on a v by b Boolean incidence matrix: (1) exactly r ones in each row, (2) exactly k ones in
each column, and (3) exactly � ones in each scalar product of two (di↵erent) rows.

This model does not contain a su�cient degree of information to trigger the equi-
propagation process. In order to take advantage of the BEE simplifications we added
symmetry breaking as described by Frisch, Je↵erson, and Miguel (2004) and illustrated
in Figure 20: Each row is viewed as sequence of four parts A . . .D with sizes �, (r � �),
(r � �), and (b � 2r + �). The first row is fixed by assigning parts A and B with ones
(marked in black) and parts C and D with zeros (marked in white). The second row is
fixed by assign parts A and C with ones (marked in black) and parts B and D with zeros
(marked in white). For the third and all subsequent rows (marked in gray), the sum con-
straints are decomposed into summing each part (A . . .D) and then summing the results as
follows: A+B = �, A+C = �, C +D = r� �, and B +D = r� �. This ensures that the
row contains exactly r ones and that the scalar product with the first (and second) row is
�. We denote this constraint model SymB (for symmetry breaking).

instance BEE (SymB) Sugar (SymB) SatELite (SymB)
[v, b, r, k,�] comp clauses SAT comp clauses SAT comp clauses SAT

(sec) (sec) (sec) (sec) (sec) (sec)
[7, 420, 180, 3, 60] 1.65 698579 1.73 12.01 2488136 13.24 1.67 802576 2.18
[7, 560, 240, 3, 80] 3.73 1211941 13.60 11.74 2753113 36.43 2.73 1397188 5.18
[12, 132, 33, 3, 6] 0.95 180238 0.73 83.37 1332241 7.09 1.18 184764 0.57
[15, 45, 24, 8, 12] 0.51 116016 8.46 4.24 466086 1 0.64 134146 1
[15, 70, 14, 3, 2] 0.56 81563 0.39 23.58 540089 1.87 1.02 79542 0.20
[16, 80, 15, 3, 2] 0.81 109442 0.56 64.81 623773 2.26 1.14 105242 0.35
[19, 19, 9, 9, 4] 0.23 39931 0.09 2.27 125976 0.49 0.4 44714 0.09
[19, 57, 9, 3, 1] 0.34 113053 0.17 1 — — 10.45 111869 0.14
[21, 21, 5, 5, 1] 0.02 0 0.00 31.91 3716 0.01 0.01 0 0.00
[25, 25, 9, 9, 3] 0.64 92059 1.33 42.65 569007 8.52 1.01 97623 8.93
[25, 30, 6, 5, 1] 0.10 24594 0.06 16.02 93388 0.42 1.2 23828 0.05
Total (sec) 36.66 > 722.93 > 219.14

Table 5: BIBD results (180 sec. timeout)

Table 5 shows results comparing BEE (compilation time, clauses in encoding, and SAT
solving time) with Sugar using the SymB model. We also compare BEE with SatELite (Eén
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BEE Comparison 
•  Applying SatELite on output of BEE 
•  YIKES! 

–  Doesn’t shrink much, usually solves slower  

34 

Metodi, Codish, and Stuckey

instance BEE � SatELite

comp clauses vars SAT comp clauses vars SAT

(sec) (sec) (sec) (sec)

K8 143 0.51 248558 5724 1.26 2.60 248250 5452 0.98
142 0.27 248414 5716 10.14 2.59 248107 5445 3.22
141 0.20 248254 5708 7.64 2.59 247947 5437 32.81
140 0.19 248078 5700 14.68 2.60 247771 5429 3.50
139 0.18 247886 5692 25.6 2.59 247579 5421 6.18
138 0.18 247678 5684 12.99 2.60 247371 5413 12.18
137 0.18 247454 5676 22.91 2.59 247147 5405 77.16
136 0.18 247214 5668 14.46 2.59 246907 5397 97.69
135 0.18 246958 5660 298.54 2.58 246651 5389 705.48
134 0.18 246686 5652 331.8 2.59 246379 5381 1

K10 267 0.65 1228962 15529 88.51 3.02 1228368 14990 430.00
266 0.65 1228660 15529 229.8 3.01 1228066 14990 259.55
265 0.65 1228338 15529 1335.31 3.02 1227744 14990 540.48
264 0.65 1227996 15529 486.09 3.02 1227402 14990 63.74
263 0.65 1227634 15529 236.68 3.01 1227040 14990 1008.06
262 0.65 1227252 15529 1843.7 3.02 1226658 14990 1916.73
261 0.65 1226850 15529 2771.6 3.04 1226256 14990 1
260 0.65 1226428 15529 4873.99 3.02 1225834 14990 1
259 0.65 1225986 15529 1 3.03 1225392 14990 1
258 0.65 1225524 15529 1 3.01 1224930 14990 1

Table 8: VTML results, BEE combined with SatELite (4 hour timeout)

Typically only some of the implied binary clauses are determined, such as those visible by
unit propagation. The trade-o↵ is regulated by the choice of the techniques applied to infer
binary clauses, considering the power and cost. See for example the work of Eén and Biere
(2005) and the references therein. There are also approaches (Li, 2003) that detect and use
Boolean equalities during run-time, which are complementary to our approach.

In our approach, the beast is tamed by introducing a notion of locality. We do not
consider the full CNF. Instead, by maintaining the original representation, a conjunction of
constraints, each viewed as a Boolean formula, we can apply powerful reasoning techniques
to separate parts of the model and maintain e�cient pre-processing.

To this end, we introduce BEE, a compiler that follows this approach to encode finite
domain constraints to CNF. Applying optimizations based on ad-hoc equi-propagation and
partial evaluation rules on a high level view of the problem allows us to simplify the problem
more aggressively than is possible with a CNF representation. The resulting CNF models
can be significantly smaller than those resulting from straight translation.

It is well-understood that making a CNF smaller is not the ultimate goal: often smaller
CNF’s are harder to solve. Indeed, one often introduces redundancies to improve SAT
encodings: so removing them is counterproductive. Our experience is that BEE reduces
the size of an encoding in a way that is productive for the subsequent SAT solving. In
particular, by removing variables that can be determined “at compile time” to be definitely
equal (or definitely di↵erent) in any solution.
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BEE Highlights 
•  Extremal Graph Theory 

–  Extremely challenging combinatorics problems 
–  Find the largest number of edges for a simple graph 

with n nodes and no 3 or 4 cycles: f4(n) 
–  Huge amount of symmetry 

•  BEE solution 
–  Encode advanced symmetry breaking constraints 
–  Discovers two new values 

•  f4(31) = 80, f4(32) = 85 

•  BEE is best where the initial problem and 
constraints fix/identify many variables 

35 
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Outline 
•  Modelling and solving 
•  Propagation based solving 
•  The advantages of keeping structure 

–  Better (static) CNF encoding 
–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 

•  MiniZinc 
•  Conclusion 
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Propagation vs CNF Encoding 
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Which is better? 
•  Experience with cardinality problems 
•  501 instances of problems with a single 

cardinality constraint 
–  unsat-based MAXSAT solving 

•  50% of instances encoding is better, 50% worse 
•  Why can propagation be superior?  

38 

Suite TO 4 2 1.5 Win 1.5 2 4 TO Win 
Card 168 54 14 7 243 7 24 215 12 258 

Speed up if encoding Slow down if encoding 



NICTA Copyright 2012 From imagination to impact 

Example: Cardinality constraints 
•  x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 3 
•  Propagator 

–  If 3 of {x1, …, x8} are true, set the rest false. 

•  Encoding 
–  Cardinality or sorting network:  

•  z21 = z33 = z34 = z35 = z36 = 0 
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Comparison: Encoding vs Propagation 
•  A (theory) propagator 

–  Lazily generates an encoding 
–  This encoding is partially stored in nogoods 
–  The encoding uses no auxiliary Boolean variables 
–  Σi=1..n xi  ≤ k generates (n-k)nCk = O(nk) explanations  

•  If the problem is UNSAT (or optimization) 
–  CP solver runtime ≥ size of smallest resolution proof 
–  Cannot decide on auxiliary variables  

•  Exponentially larger proof 

–  Compare Σi=1..n xi  ≤ k encoding is O(n log2 k) 
•  But propagation is faster than encoding 

40 
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Lazy Encoding 
•  Choose at runtime between encoding and 

propagation 
•  All constraints are initially propagators 
•  If a constraint generates many explanations 

–  Replace the propagator by an encoding 
–  At restart (just to make it simple) 

•  Policy: encode if either 
–  The number of different explanations is > 50% of the 

encoding size 
–  More than 70% of explanations are new and > 5000 

41 
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Lazy Encoding 
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Lazy Encoding results 
•  MSU4 results 

•  Tomography 

43 

<10s <30s <60s <120s <300s <600s 
Encoding 5374 5525 5578 5621 5659 5677 
Propagation 4322 4530 4603 4667 4737 4767 
Lazy 
Encoding 

5222 5479 5585 5636 5666 5679 

<10s <30s <60s <120s <300s <600s 
Encoding 773 1112 1314 1501 1759 1932 
Propagation 1457 1748 1858 1962 2014 2021 
Lazy 
Encoding 

1556 1818 1935 1971 2012 2021 
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Lazy Encoding 
•  Keep the structure during solving 

–  Use the structure to decide on solving method 

•  Almost always equals or exceeds the best of  
–  Propagation 
–  Encoding 

•  Obvious advantages when 
–  Some constraints are not/rarely involved in failure 

•  These are never encoded 

44 
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Outline 
•  Modelling and solving 
•  Propagation based solving 
•  The advantages of keeping structure 

–  Better (static) CNF encoding 
–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 

•  MiniZinc 
•  Conclusion 
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Lazy Clause Generation (LCG) 
•  A hybrid SAT and CP solving approach 
•  Add explanation and nogood learning to a  
   propagation based solver 
•  Key change 

–  Modify propagators to explain their inferences 
–  They become “theory propagators” 
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LCG in a Nutshell 
•  Integer variable x in l..u encoded as Booleans 

–  [x ≤ d],  d in l..u-1 
–  [x = d],  d in l..u 

•  Dual representation of domain D(x) 
•  Restrict to atomic changes in domain (literals) 

–  x ≤ d  (itself) 
–  x ≥ d     ! [x ≤ d-1]  use [x ≥ d] as shorthand 
–  x = d  (itself) 
–  x ≠ d  ! [x = d]     use [x ≠ d] as shorthand 

•  Propagation is clause generation 
–  e.g.    [x ≤ 2]  and x ≥ y means that   [y ≤ 2] 
–  clause [x ≤ 2] è[y ≤ 2] 
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(Original) LCG propagation example 
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c 
•  Constraints:  

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,  
–  4x + 10y + 5z ≤ 71 (lin) 

•  Execution 

48 

[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] [y ≥ 4] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y D(y) 

1UIP nogood: c ∧	
 [y ≠ 3] è false     or      [y ≠ 3] è !c  
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LCG propagation example 
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c 
•  Constraints:  

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,  
–  4x + 10y + 5z ≤ 71 (lin) 

•  Backtrack 
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[x ≥ 5] 

[y ≤ 5] 

b lin b → y ≠ 3 

1UIP nogood: c ∧	
 [y ≠ 3] è false     or      [y ≠ 3] è !c  

[y ≠ 3] !c 
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LCG is SMT 
•  Each CP propagator is a theory propagator 
•  They operate on the shared Boolean 

representation of integer (and other) variables 
•  But (at least for original LCG) each explanation 

clause is also recorded 
–  Still useful for complex propagators where 

explanation is expensive, also causes reprioritization 
–  Used for state-of-the-art scheduling results. 
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LCG propagation example 
•  Execution 
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[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y 

Explanation: x ≥ 6 ∧y ≥ 4 ∧z ≥ 4 ∧4x + 10y + 5z ≤ 71 è false    

Lifted Explanation: x ≥ 5 ∧y ≥ 4 ∧z ≥ 3 ∧4x + 10y + 5z ≤ 71 è false    

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[z ≥ 3] è false    

Explanation: y ≥ 4∧z ≥ y èz ≥ 4 

Lifted Explanation: y ≥ 3∧z ≥ y èz ≥ 3 

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[y ≥ 3] è false    

Absorbtion 
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LCG propagation example 
•  Execution 
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[x ≥ 5] 

[y ≤ 5] 

b 

[y ≠ 3] 

c 

[y ≥ 3] 

[x ≥ 6] 

[z ≥ 4] false 

lin b → y ≠ 3 c → y ≥ 3 

c → x ≥ 6 

lin z ≥ y 

Nogood: [x ≥ 5] ∧[y ≥ 4] è false    

1UIP Nogood: [x ≥ 5] ∧[y ≥ 4] è false    

1UIP Nogood: [x ≥ 5] è[y ≤ 3] 
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LCG propagation example 
•  Backjump 
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[x ≥ 5] 

[y ≤ 5] 

lin 

Nogood: [x ≥ 5] ∧[y ≥ 4] è false    

[y ≤ 3] 

x ≥ 5 èy ≤ 3 
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LCG is not SMT 
•  Essential differences 

–  LCG:  
•  focus on optimization 
•  communication by literals on domains 
•  global constraint propagators with explanation 

–  Capturing substructure 

–  SMT:  
•  focus on theorem proving + verification 
•  communication by theory constraints 
•  theory "propagators” that treat all similar constraints 

simultaneously (e.g. difference logic, linear arithmetic) 
–  Capturing sub-theories 



NICTA Copyright 2012 From imagination to impact 

Lessons from LCG 
•  Lazy literal generation 

–  Integer variable representation is generated only as 
needed 

•  Encoding can be bad 
–  Even without the size blowup 

•  Programmed search 
–  For (many) problems default activity search is bad 

•  typically where we cannot prove optimality 
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Lazy Literal Generation 
•  For constraint problems over large domains lazy 

literal generation is crucial 
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amaze fastfood filters league mspsp nonogram patt-set 
Initial 8690 1043k 8204 341k 13534 448k 19916 
Root 6409 729k 6944 211k 9779 364k 19795 
Created 2214 9831 1310 967 6832 262k 15490 
Percent 34% 1.3% 19% 0.45% 70% 72% 78% 

proj-plan radiation shipshed solbat still-life tpp 
Initial 18720 145k 2071k 12144 18947 19335 
Root 18478 43144 2071k 9326 12737 18976 
Created 5489 1993 12943 10398 3666 9232 
Percent 30% 4.6% 0.62% 111% 29% 49% 
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Encoding versus Propagation 
•  Propagation can be superior 

–  Even if the encoding propagates as strongly 
–  And its size complexity is no higher than the propagator 

•  Example: multi-decision diagrams (n nodes) 
–  SAT encoding of MDD propagates equivalent (no bigger O(nd)) 
–  Propagator uses structure of MDD (faster propagation) 
–  Intermediate variables don’t help search (even though its VSIDS) 
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n Tseitin fails Equiv fails MDD fails 
14 75.24 331k 24.39 63k 5.59 51k 
15 366.03 1128k 67.59 148k 7.86 65k 
16 --- --- 82.88 148k 18.03 123k 
17 --- --- 183.28 276k 68.32 381k 
18 --- --- 392.91 445k 101.31 500k 
19 --- --- --- --- 118.16 538k 
20 --- --- --- --- 384.99 1341k 
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Activity-based search is BAD 
•  Car sequencing problem (production line 

scheduling) 
•  Comparing different search strategies 

–  Static: selecting in order 
–  DomWDeg: weight variables appearing in constraints 

that fail 
–  Impact: prioritising decisions that reduce domains 
–  VSIDS  
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Static DomWDeg Impact VSIDS 
Time (s) 206.3 0.8 951.3 1522.2 
Solved (70) 66 70 55 47 
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Hybrid Searches 
•  Most of our state-of-the-art results use 
•  Hybrid searches 

–  Problem specific objective based search 
•  To find good solutions early 

–  Switching to activity based search 
•  To prove optimality    

•  Sometimes alternating the two! 
•  Or throwing a weighted coin to decide which 

59 
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LCG Successes 
•  Scheduling 

–  Resource Constrained Project Scheduling Problems 
(RCPSP) 

•  (probably) the most studied scheduling problems 
•  LCG closed 71 open problems  
•  Solves more problems in 18s then previous SOTA in 1800s 

–  RCPSP/Max (more complex precedence constraints) 
•  LCG closed 578 open instances of 631 
•  LCG recreates or betters all best known solutions by any 

method on 2340 instances except 3 

–  RCPSP/DC (discounted cashflow) 
•  Always finds solution on 19440 instances, optimal in all but 

152 (versus 832 in previous SOTA) 
•  LCG is the SOTA complete method for this problem 
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LCG Successes 
•  Real World Application 

–  Carpet Cutting 
•  Complex packing problem 
•  Cut carpet pieces from a roll to minimize length 
•  Data from deployed solution 

–  Lazy Clause Generation Solution 
•  First approach to find and prove optimal solutions 
•  Faster than the current deployed solution 
•  Reduces waste by 35% 
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LCG Successes 
•  MiniZinc Challenge 

–  comparing CP solvers on a series of challenging 
problems 

–  Competitors 
•  CP solvers such as Gecode, Eclipse, SICstus Prolog 
•  MIP solvers CPLEX, Gurobi, SCIP (encoding by us) 
•  Decompositions to SMT and SAT solvers 

–  LCG solvers (from our group) were 
•  First (Chuffed) and Second (CPX) in all categories in 2011 and 

2012 
•  First (Chuffed) in all categories in 2010 

–  SMT based approach (fzn2smt) Fourth behind Gecode 
–  Illustrates that the approach is strongly beneficial on a 

wide range of problems  
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Outline 
•  Modelling and solving 
•  Propagation based solving 
•  The advantages of keeping structure 

–  Better (static) CNF encoding 
–  Dynamic choice: propagation versus CNF encoding 
–  Propagation with learning (Lazy Clause Generation) 

•  MiniZinc 
•  Conclusion 
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MiniZinc 
•  A solver independent modelling language for 

combinatorial optimization problems 
–  Open source, developed since 2007 
–  Closest thing to a Constraint Programming standard 

•  Domains: Booleans, integers, floats, sets of 
integers 

•  Globals:  
–  User defined predicates + functions 
–  Reflection functions 
–  Customizable library of global constraint definitions 

•  Features 
–  Annotations for adding non-declarative information  
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example: Jobshop Scheduling 
int: n; set of int: Job=1..n;  % no of jobs 
int: m; set of int: Task=1..m; % task per job 
int: span;                     % max end time 

array[Job,Task] of int: d; 
array[Job,Task] of Task: mc; 
array[Job,Task] of var 0..span: s; 
constraint forall(i in Job, j in 1..m-1)  
                 (s[i,j] + d[i,j] <= s[i,j+1]);  

constraint forall(k in Task) 
    (unary([s[i,j] | i in Job, j in Task  
                     where mc[i,j] = k],   

      [d[i,j] | i in Job, j in Task  
                     where mc[i,j] = k])); 
var int: obj = max([s[i,m] + d[i,m] | i in Job]); 
solve minimize obj;   
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MiniZinc Example 
•  Separate data file 
n = 2; m = 2; span = 10;  

d = [|3,5|6,2|]; mc = [|1,2|2,1|]; 

•  Flattened to FlatZinc 
array[1..4] of var 0..10: s 
var 5..15: obj; 
int_lin_le([1, -1], [s[1], s[2]], -3); 
int_lin_le([1, -1], [s[3], s[4]], -6); 
unary([s[1],s[4]],[3,2]); 
unary([s[2],s[3]],[5,6]); 
int_maximum([I1,I2],obj); 
var 5..15: I1; var 5..15: I2; 
int_lin_eq([-1,1],[I1,s[2]],-5); 
int_lin_eq([-1,1],[I2,s[4]],-2); 
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User-defined constraint treatment 
•  Solver dependent rewriting 

–  E.g. replacing unary global by non-overlap disjunction 
predicate unary(array[int] of var int:s;  
                array[int] of int:d) = 

forall(i,j in index_set(s) where i < j) 

 (s[i] + d[i] <= s[j] \/ s[j] + d[j] <= s[i]); 

•  Critical to support by many solvers 
–  CP solvers: Gecode, Eclipse, SICStus Prolog, 

Bprolog, Choco, Mistral, Jacop, izplus, Chuffed, CPX, 
lazyfd, g12-fd 

–  MIP solvers: SCIP, Cplex, Gurobi, Coin-OR-CBC 
–  SAT + SMT Solvers: fzntini, bee, minisatID, fzn2smt 
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libmzn 
•  A new open source framework: LLVM like 
•  Direct interface to solvers and C++ API 
•  Specialist transformations 

–  Booleanization 
–  Linearization 

•  A good modelling 
   language for 

–  SAT + 
–  SMT solvers 

•  Release 
–  September 2013 
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libmzn

alldiff.mzn
alldiff.mzn

alldiff.mzn
alldiff.mzn

model.mzn

globals.mzn

alldiff.mzn

alldiff.mzn
alldiff.mzn

alldiff.mzn

mzn2fzn instance.fzn

data.dzn

solver

Solver libraryStandard library

User model/data

solution.dzn

CSE

bool2int

propagation 
strength

frontend

instance.fzn

solver

solution.dzn

pretty printer

translator

C++ API
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Conclusions 
•  Combinatorial problems often include 

–  Substantial and well understood substructures 

•  Modelling should  
–  allow these substructures to be expressed 

•  Solving should  
–  allow these substructures to be taken advantage of 

•  Taking note of substructures can: 
–  Improve design models (better translation) 
–  Allow use to choose between encoding and propagation 
–  Create powerful dynamic encodings 
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The Hard Word 
•  If you want to compete with all optimization 

technology 
–  Competition is on a high level model, not CNF 

•  Then ignoring the structure 
–  Will not compete! 

•  So remember 

There are no CNF problems 
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The future directions 
•  Details of  how modern LCG solvers work 

–  www.cs.mu.oz.au/~pjs/papers/cpx.pdf 

•  More about MiniZinc 
–  www.minizinc.org 

•  More about BEE 
–  http://amit.metodi.me/research/bee/  

•  Structure-based extended resolution 
–  Advantages of encoding + propagation simultaneously 
–  http://arxiv.org/abs/1306.4418 

•  Unsatisfiable cores for constraint programming 
–  Easy to translate UNSAT core methods from SAT 
–  http://arxiv.org/abs/1305.1690 78 


