
NICTA Copyright 2012 From imagination to impact

There are no
CNF problems

Peter J. Stuckey and
countless others!

NICTA Copyright 2012 From imagination to impact

Conspirators
•  Ignasi Abio, Ralph Becket, Sebastian Brand,

Geoffrey Chu, Michael Codish, Greg Duck, Nick
Downing, Thibaut Feydy, Graeme Gange, Vitaly
Lagoon, Amit Metodi, Alice Miller, Nick
Nethercote, Roberto Nieuwenhuis, Olga
Ohrimenko, Albert Oliveras, Patrick Prosser,
Enric Rodriguez Carbonell, Andreas Schutt,
Guido Tack, Mark Wallace

•  All errors and outrageous lies are mine

2

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

3

NICTA Copyright 2012 From imagination to impact

A famous problem (in CNF)
c unknown problem
p cnf 6 9
1 2 0
3 4 0
5 6 0
-1 -3 0
-1 -5 0
-3 -5 0
-2 -4 0
-2 -6 0
-4 -6 0

4

NICTA Copyright 2012 From imagination to impact

A famous problem (in CNF)
c unknown problem
p cnf 12 22

1 2 3 0 4 5 6 0 7 8 9 0 10 11 12 0

-1 -4 0 -1 -7 0 -1 -10 0

-4 -7 0 -4 -10 0 -7 -10 0

-2 -5 0 -2 -8 0 -2 -11 0

-5 -8 0 -5 -11 0 -8 -11 0

-3 -6 0 -3 -9 0 -3 -12 0

-6 -9 0 -6 -12 0 -9 -12 0

5

NICTA Copyright 2012 From imagination to impact

A famous problem (in MiniZinc)
int: n;
array[1..n] of var 1..n-1: x;

constraint alldifferent(x);

solve satisfy;

n = 4; % data could be

 % in different file

6

NICTA Copyright 2012 From imagination to impact

A famous problem (in MiniZinc)
int: n;
set of int: Pigeon = 1..n;

set of int: Hole = 1..n-1;

array[Pigeon] of var Hole: x;

constraint alldifferent(x);

solve satisfy;

n = 4; % data could be

 % in different file

7

NICTA Copyright 2012 From imagination to impact

A famous problem (in SMT-LIB?)
(declare-fun x1 () Int)
(declare-fun x2 () Int)
(declare-fun x3 () Int)
(declare-fun x4 () Int)
(assert (and (< x1 4) (> x1 0)))
(assert (and (< x2 4) (> x2 0)))
(assert (and (< x3 4) (> x3 0)))
(assert (and (< x4 4) (> x4 0)))
(assert (and (distinct x1 x2)
(distinct x1 x3) (distinct x1 x4)
(distinct x2 x3) (distinct x2 x4)
(distinct x3 x4))

8

NICTA Copyright 2012 From imagination to impact

A famous problem (in SMT-LIB?)
(declare-fun x1 () Int)
(declare-fun x2 () Int)

(declare-fun x3 () Int)

(declare-fun x4 () Int)

(assert (and (< x1 4) (> x1 0)))

(assert (and (< x2 4) (> x2 0)))

(assert (and (< x3 4) (> x3 0)))

(assert (and (< x4 4) (> x4 0)))

(assert (alldifferent x1 x2 x3 x4))

9

NICTA Copyright 2012 From imagination to impact

Modelling and Solving

•  The conceptual model
–  A formal mathematical statement of the (simplified)

problem
•  The design model

–  In the form that can be handled by a solver

10

Problem
(hard)

Design
Model encoding	

Conceptual
Model modeling	

NICTA Copyright 2012 From imagination to impact

Modelling and Solving

11

Problem
(hard) Instance encoding	

Conceptual
Model modeling	

so
lv
in
g

Solution decoding Answer use Benefit

Problem
Data

NICTA Copyright 2012 From imagination to impact

Modelling and Solving in SAT

12

Problem
(hard) CNF encoding	

Conceptual
Model modeling	

SA
T

so
lv
in
g

Solution decoding Answer use Benefit

Problem
Data

NICTA Copyright 2012 From imagination to impact

Modelling and Solving in MiniZinc

13

Problem
(hard)

FlatZinc
instance encoding	

MiniZinc
model modeling	

Data
File

Solution output Answer use Benefit

Solver

so
lv
in
g

translating

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

14

NICTA Copyright 2012 From imagination to impact

Propagation based solving
•  domain D maps var x to possible values D(x)
•  propagator fc: D → D for constraint c

–  monotonic decreasing function
–  removes value which cannot be part of solution

•  propagation solver D = solv(F,D)
–  Repeatedly apply propagators f ∈ F to D until f(D) = D

for all f ∈ F
•  finite domain solving

–  Add new constraint c, D’ = solv(F U {fc}, D)
–  On failure backtrack and add not c
–  Repeat until all variables fixed.

15

NICTA Copyright 2012 From imagination to impact

Propagation = Inference
•  Example: z ≥ y propagator f

–  D(y) = {4,5,6}, D(z) = {0,1,2,3,4,5,6}
–  f(D)(y) = {4,5,6}, f(D)(z) = {4,5,6}

•  Domain D is a formula: D = ∧x x ∈ D(x)
•  Propagation

–  D ∧	
 c è fc(D)
•  On example

–  y ∈ {4,5,6} ∧ z ≥ y è z ∈ {4,5,6}
•  Separation:

–  Core constraints (unary) ∧x x ∈ S (complete solver)
–  Inference of new core constraints from other constraints

16

NICTA Copyright 2012 From imagination to impact

Problem substructure
•  Assignment substructure:

–  alldifferent(x): maps each x to a different value

•  Hamiltonian circuit substructure:
–  circuit(next): next defines a Hamiltonian tour

•  Resource utilization substructure
–  cumulative(s,d,r,L): tasks with starttime s,

duration d, and resource usage r, never use more
then L resources

•  Packing substructure
–  diff2(x,y,xd,yd) objects at (xi,yi) with size

(xdi,ydi) don’t overlap

17

NICTA Copyright 2012 From imagination to impact

FD propagation example
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c
•  Constraints:

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,
–  4x + 10y + 5z ≤ 71 (lin)

•  Example search

18

 x ≥ 5 lin b b → y ≠ 3 c c → y ≥ 3 c → x ≥ 6 z ≥ y lin
D(x) 5..6 6 
D(y) 0..6 0..5 0..2,4..5 4..5 
D(z) 0..6 4..6 
D(b) 0..1 1
D(c) 0..1 1

NICTA Copyright 2012 From imagination to impact

FD propagation example
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c
•  Constraints:

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,
–  4x + 10y + 5z ≤ 71 (lin)

•  Failure detected,
–  backtrack and reverse last decision

19

 x ≥ 5 lin b b → y ≠ 3 not c
D(x) 5..6
D(y) 0..6 0..5 0..2,4..5
D(z) 0..6
D(b) 0..1 1
D(c) 0..1 0

NICTA Copyright 2012 From imagination to impact

FD propagation
•  Strengths

–  High level modelling
–  Specialized global propagators capture substructure

•  and all work together

–  Programmable search

•  Weaknesses
–  Weak autonomous search
–  Optimization by repeated satisfaction
–  Small models can be intractable

20

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

21

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

22

NICTA Copyright 2012 From imagination to impact

Better encoding to SAT

23

Problem
(hard) CNF encoding	

Conceptual
Model modeling	

SA
T

so
lv
in
g

Solution decoding Answer use Benefit

Problem
Data

NICTA Copyright 2012 From imagination to impact

Better CNF encoding
•  Not all SAT encodings are equal
•  Significant research encoding constraints to SAT

–  Atmostone
–  Cardinality constraints
–  Psuedo-Boolean constraints
–  Integer variables

•  Significant research on “improving” a CNF model
after encoding: preprocessing.

24

NICTA Copyright 2012 From imagination to impact

Example: encoding Sudoku	

 = cell (i,j)
contains value k

cells	

rows	

columns	

boxes	

“unit clauses”	

At least	

At most	

NICTA Copyright 2012 From imagination to impact

So? What’s the Problem?	

Conceptu
al Model

Answer

CNF

SAT ’ing
Assignm.

encoding	

decoding	

sat solving	

Tedious task; often
repetitive; 	

1,000,000’s of clauses;
100,000’s of variables;
Bugs are hard to track;
Optimizations are costly 	

CNF preprocessors are many: eg,
Satelite, Coprocessor

But, these tools apply weak forms
of reasoning to cope with huge
CNF sizes. (users sometimes
prefer to turn them off)	

NICTA Copyright 2012 From imagination to impact

Example: encoding Sudoku	

Conceptual
Model CNF encoding	

High level
Instance encoding	

var 1..9: x11;
var 1..9: x12;
…

alldifferent([x11, … x19]);
alldifferent([x21, …,x29]);
…

x11 = 5;
x12 = 3;
…

Problem
Data

Let the high level
structured instance drive
the CNF encoding	

NICTA Copyright 2012 From imagination to impact

 High level Instance C1	
 C2	
 C3	
 Cn	

en

co
de
	

en
co

de
	

en
co

de
	

en
co

de
	

CNF
si
m
pl
if
ic
at

io
n	

The Usual Approach	

NICTA Copyright 2012 From imagination to impact

 High level Instance C1	
 C2	
 C3	
 Cn	

en

co
de
	

CNF

Our Approach	

en
co

de
	

en
co

de
	

en
co

de
	

CNF CNF CNF

NICTA Copyright 2012 From imagination to impact

of the form X=L where L
is a constant or a literal:
X=Y, X= -Y, X=0, X=1

 High level Instance C1	
 C2	
 C3	
 Cn	

en

co
de
	

CNF

Our Approach	

en
co

de
	

en
co

de
	

CNF CNF

Equi-propagation is the process
of inferring equations implied
by a “single” constraint.	

such X can be
removed from
all constraints.

	

more powerful reasoning but on
smaller CNF portions	
This is a propagation based solver!

Core constraints: literal equations (complete solver is congruence closure)
Other constraints: infer new core constraints.

NICTA Copyright 2012 From imagination to impact

Equi-Propagation
•  Infer equalities between literals and constants
•  Apply substitution to remove equated literals
•  E.g. D(x) = [0..4], D(y) = [0..4]

–  Order encoding
–  [x1,x2,x3,x4] [y1,y2,y3,y4] vi = (v ≥ i)

•  Constraint y ≠ 2
–  y2 = y3

•  Constraint x + y = 3
–  x4 = 0, y4 = 0, y3 = !x1, y2 = !x2, y1 = !x3
–  [x1,x1,x3,0] [-x3,-x1,-x1,0]

•  Constraint 3x + 4z + 9t ≥ 3
31

NICTA Copyright 2012 From imagination to impact

Ben-Gurion Equi-Propagation Encoder
•  BEE encoder
•  Translates high level instance to CNF
•  Integers represented by order/value/binary

encoding
•  Equi propagation by

–  Adhoc rules per constraint type
•  fast, precise in practice

–  Complete equi-propagation using SAT (?)

•  And adhoc partial evaluation rules

32

NICTA Copyright 2012 From imagination to impact

BEE Comparisons

33

•  Balanced Incomplete Block Design
•  Compared with

–  Sugar (CSP encoder)
–  BEE minus equi-propagation + SatELite

Boolean Equi-propagation

Figure 20: BIBD symmetry breaking.

The naive model for a BIBD instance [v, b, r, k,�] introduces the following constraints
on a v by b Boolean incidence matrix: (1) exactly r ones in each row, (2) exactly k ones in
each column, and (3) exactly � ones in each scalar product of two (di↵erent) rows.

This model does not contain a su�cient degree of information to trigger the equi-
propagation process. In order to take advantage of the BEE simplifications we added
symmetry breaking as described by Frisch, Je↵erson, and Miguel (2004) and illustrated
in Figure 20: Each row is viewed as sequence of four parts A . . .D with sizes �, (r � �),
(r � �), and (b � 2r + �). The first row is fixed by assigning parts A and B with ones
(marked in black) and parts C and D with zeros (marked in white). The second row is
fixed by assign parts A and C with ones (marked in black) and parts B and D with zeros
(marked in white). For the third and all subsequent rows (marked in gray), the sum con-
straints are decomposed into summing each part (A . . .D) and then summing the results as
follows: A+B = �, A+C = �, C +D = r� �, and B +D = r� �. This ensures that the
row contains exactly r ones and that the scalar product with the first (and second) row is
�. We denote this constraint model SymB (for symmetry breaking).

instance BEE (SymB) Sugar (SymB) SatELite (SymB)
[v, b, r, k,�] comp clauses SAT comp clauses SAT comp clauses SAT

(sec) (sec) (sec) (sec) (sec) (sec)
[7, 420, 180, 3, 60] 1.65 698579 1.73 12.01 2488136 13.24 1.67 802576 2.18
[7, 560, 240, 3, 80] 3.73 1211941 13.60 11.74 2753113 36.43 2.73 1397188 5.18
[12, 132, 33, 3, 6] 0.95 180238 0.73 83.37 1332241 7.09 1.18 184764 0.57
[15, 45, 24, 8, 12] 0.51 116016 8.46 4.24 466086 1 0.64 134146 1
[15, 70, 14, 3, 2] 0.56 81563 0.39 23.58 540089 1.87 1.02 79542 0.20
[16, 80, 15, 3, 2] 0.81 109442 0.56 64.81 623773 2.26 1.14 105242 0.35
[19, 19, 9, 9, 4] 0.23 39931 0.09 2.27 125976 0.49 0.4 44714 0.09
[19, 57, 9, 3, 1] 0.34 113053 0.17 1 — — 10.45 111869 0.14
[21, 21, 5, 5, 1] 0.02 0 0.00 31.91 3716 0.01 0.01 0 0.00
[25, 25, 9, 9, 3] 0.64 92059 1.33 42.65 569007 8.52 1.01 97623 8.93
[25, 30, 6, 5, 1] 0.10 24594 0.06 16.02 93388 0.42 1.2 23828 0.05
Total (sec) 36.66 > 722.93 > 219.14

Table 5: BIBD results (180 sec. timeout)

Table 5 shows results comparing BEE (compilation time, clauses in encoding, and SAT
solving time) with Sugar using the SymB model. We also compare BEE with SatELite (Eén

33

NICTA Copyright 2012 From imagination to impact

BEE Comparison
•  Applying SatELite on output of BEE
•  YIKES!

–  Doesn’t shrink much, usually solves slower

34

Metodi, Codish, and Stuckey

instance BEE � SatELite

comp clauses vars SAT comp clauses vars SAT

(sec) (sec) (sec) (sec)

K8 143 0.51 248558 5724 1.26 2.60 248250 5452 0.98
142 0.27 248414 5716 10.14 2.59 248107 5445 3.22
141 0.20 248254 5708 7.64 2.59 247947 5437 32.81
140 0.19 248078 5700 14.68 2.60 247771 5429 3.50
139 0.18 247886 5692 25.6 2.59 247579 5421 6.18
138 0.18 247678 5684 12.99 2.60 247371 5413 12.18
137 0.18 247454 5676 22.91 2.59 247147 5405 77.16
136 0.18 247214 5668 14.46 2.59 246907 5397 97.69
135 0.18 246958 5660 298.54 2.58 246651 5389 705.48
134 0.18 246686 5652 331.8 2.59 246379 5381 1

K10 267 0.65 1228962 15529 88.51 3.02 1228368 14990 430.00
266 0.65 1228660 15529 229.8 3.01 1228066 14990 259.55
265 0.65 1228338 15529 1335.31 3.02 1227744 14990 540.48
264 0.65 1227996 15529 486.09 3.02 1227402 14990 63.74
263 0.65 1227634 15529 236.68 3.01 1227040 14990 1008.06
262 0.65 1227252 15529 1843.7 3.02 1226658 14990 1916.73
261 0.65 1226850 15529 2771.6 3.04 1226256 14990 1
260 0.65 1226428 15529 4873.99 3.02 1225834 14990 1
259 0.65 1225986 15529 1 3.03 1225392 14990 1
258 0.65 1225524 15529 1 3.01 1224930 14990 1

Table 8: VTML results, BEE combined with SatELite (4 hour timeout)

Typically only some of the implied binary clauses are determined, such as those visible by
unit propagation. The trade-o↵ is regulated by the choice of the techniques applied to infer
binary clauses, considering the power and cost. See for example the work of Eén and Biere
(2005) and the references therein. There are also approaches (Li, 2003) that detect and use
Boolean equalities during run-time, which are complementary to our approach.

In our approach, the beast is tamed by introducing a notion of locality. We do not
consider the full CNF. Instead, by maintaining the original representation, a conjunction of
constraints, each viewed as a Boolean formula, we can apply powerful reasoning techniques
to separate parts of the model and maintain e�cient pre-processing.

To this end, we introduce BEE, a compiler that follows this approach to encode finite
domain constraints to CNF. Applying optimizations based on ad-hoc equi-propagation and
partial evaluation rules on a high level view of the problem allows us to simplify the problem
more aggressively than is possible with a CNF representation. The resulting CNF models
can be significantly smaller than those resulting from straight translation.

It is well-understood that making a CNF smaller is not the ultimate goal: often smaller
CNF’s are harder to solve. Indeed, one often introduces redundancies to improve SAT
encodings: so removing them is counterproductive. Our experience is that BEE reduces
the size of an encoding in a way that is productive for the subsequent SAT solving. In
particular, by removing variables that can be determined “at compile time” to be definitely
equal (or definitely di↵erent) in any solution.

36

NICTA Copyright 2012 From imagination to impact

BEE Highlights
•  Extremal Graph Theory

–  Extremely challenging combinatorics problems
–  Find the largest number of edges for a simple graph

with n nodes and no 3 or 4 cycles: f4(n)
–  Huge amount of symmetry

•  BEE solution
–  Encode advanced symmetry breaking constraints
–  Discovers two new values

•  f4(31) = 80, f4(32) = 85

•  BEE is best where the initial problem and
constraints fix/identify many variables

35

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

36

NICTA Copyright 2012 From imagination to impact

Propagation vs CNF Encoding

37

Conceptual
Model CNF encoding	

High level
Instance encoding	

Problem
Data

SA
T

so
lv
in
g

CP

so
lv
in
g

Solution

Alternatives
•  Encode and

SAT solve

•  Propagate

NICTA Copyright 2012 From imagination to impact

Which is better?
•  Experience with cardinality problems
•  501 instances of problems with a single

cardinality constraint
–  unsat-based MAXSAT solving

•  50% of instances encoding is better, 50% worse
•  Why can propagation be superior?

38

Suite TO 4 2 1.5 Win 1.5 2 4 TO Win
Card 168 54 14 7 243 7 24 215 12 258

Speed up if encoding Slow down if encoding

NICTA Copyright 2012 From imagination to impact

Example: Cardinality constraints
•  x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 3
•  Propagator

–  If 3 of {x1, …, x8} are true, set the rest false.

•  Encoding
–  Cardinality or sorting network:

•  z21 = z33 = z34 = z35 = z36 = 0

39

x1

x2

x3

x4

x5

x6

x7

x8

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

z16

z17

z18

z19

z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33

z34

z35

z36

z37

z38

0
0
0
0
0

NICTA Copyright 2012 From imagination to impact

Comparison: Encoding vs Propagation
•  A (theory) propagator

–  Lazily generates an encoding
–  This encoding is partially stored in nogoods
–  The encoding uses no auxiliary Boolean variables
–  Σi=1..n xi ≤ k generates (n-k)nCk = O(nk) explanations

•  If the problem is UNSAT (or optimization)
–  CP solver runtime ≥ size of smallest resolution proof
–  Cannot decide on auxiliary variables

•  Exponentially larger proof

–  Compare Σi=1..n xi ≤ k encoding is O(n log2 k)
•  But propagation is faster than encoding

40

NICTA Copyright 2012 From imagination to impact

Lazy Encoding
•  Choose at runtime between encoding and

propagation
•  All constraints are initially propagators
•  If a constraint generates many explanations

–  Replace the propagator by an encoding
–  At restart (just to make it simple)

•  Policy: encode if either
–  The number of different explanations is > 50% of the

encoding size
–  More than 70% of explanations are new and > 5000

41

NICTA Copyright 2012 From imagination to impact

Lazy Encoding

42

Conceptual
Model CNF runtime

encoding	

High level
Instance encoding	

Problem
Data

Solution

•  Propagate

•  Replace with
Encoding

Solver
state

so
lv
in
g

NICTA Copyright 2012 From imagination to impact

Lazy Encoding results
•  MSU4 results

•  Tomography

43

<10s <30s <60s <120s <300s <600s
Encoding 5374 5525 5578 5621 5659 5677
Propagation 4322 4530 4603 4667 4737 4767
Lazy
Encoding

5222 5479 5585 5636 5666 5679

<10s <30s <60s <120s <300s <600s
Encoding 773 1112 1314 1501 1759 1932
Propagation 1457 1748 1858 1962 2014 2021
Lazy
Encoding

1556 1818 1935 1971 2012 2021

NICTA Copyright 2012 From imagination to impact

Lazy Encoding
•  Keep the structure during solving

–  Use the structure to decide on solving method

•  Almost always equals or exceeds the best of
–  Propagation
–  Encoding

•  Obvious advantages when
–  Some constraints are not/rarely involved in failure

•  These are never encoded

44

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

45

NICTA Copyright 2012 From imagination to impact

Lazy Clause Generation (LCG)
•  A hybrid SAT and CP solving approach
•  Add explanation and nogood learning to a
 propagation based solver
•  Key change

–  Modify propagators to explain their inferences
–  They become “theory propagators”

46

NICTA Copyright 2012 From imagination to impact

LCG in a Nutshell
•  Integer variable x in l..u encoded as Booleans

–  [x ≤ d], d in l..u-1
–  [x = d], d in l..u

•  Dual representation of domain D(x)
•  Restrict to atomic changes in domain (literals)

–  x ≤ d (itself)
–  x ≥ d ! [x ≤ d-1] use [x ≥ d] as shorthand
–  x = d (itself)
–  x ≠ d ! [x = d] use [x ≠ d] as shorthand

•  Propagation is clause generation
–  e.g. [x ≤ 2] and x ≥ y means that [y ≤ 2]
–  clause [x ≤ 2] è[y ≤ 2]

NICTA Copyright 2012 From imagination to impact

(Original) LCG propagation example
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c
•  Constraints:

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,
–  4x + 10y + 5z ≤ 71 (lin)

•  Execution

48

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3] [y ≥ 4]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y D(y)

1UIP nogood: c ∧	
 [y ≠ 3] è false or [y ≠ 3] è !c

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Variables: {x,y,z} D(v) = [0..6] Booleans b,c
•  Constraints:

–  z ≥ y, b → y ≠ 3, c → y ≥ 3, c → x ≥ 6,
–  4x + 10y + 5z ≤ 71 (lin)

•  Backtrack

49

[x ≥ 5]

[y ≤ 5]

b lin b → y ≠ 3

1UIP nogood: c ∧	
 [y ≠ 3] è false or [y ≠ 3] è !c

[y ≠ 3] !c

NICTA Copyright 2012 From imagination to impact

LCG is SMT
•  Each CP propagator is a theory propagator
•  They operate on the shared Boolean

representation of integer (and other) variables
•  But (at least for original LCG) each explanation

clause is also recorded
–  Still useful for complex propagators where

explanation is expensive, also causes reprioritization
–  Used for state-of-the-art scheduling results.

50

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Execution

51

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y

Explanation: x ≥ 6 ∧y ≥ 4 ∧z ≥ 4 ∧4x + 10y + 5z ≤ 71 è false

Lifted Explanation: x ≥ 5 ∧y ≥ 4 ∧z ≥ 3 ∧4x + 10y + 5z ≤ 71 è false

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[z ≥ 3] è false

Explanation: y ≥ 4∧z ≥ y èz ≥ 4

Lifted Explanation: y ≥ 3∧z ≥ y èz ≥ 3

Nogood: [x ≥ 5] ∧[y ≥ 4] ∧[y ≥ 3] è false

Absorbtion

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Execution

52

[x ≥ 5]

[y ≤ 5]

b

[y ≠ 3]

c

[y ≥ 3]

[x ≥ 6]

[z ≥ 4] false

lin b → y ≠ 3 c → y ≥ 3

c → x ≥ 6

lin z ≥ y

Nogood: [x ≥ 5] ∧[y ≥ 4] è false

1UIP Nogood: [x ≥ 5] ∧[y ≥ 4] è false

1UIP Nogood: [x ≥ 5] è[y ≤ 3]

NICTA Copyright 2012 From imagination to impact

LCG propagation example
•  Backjump

53

[x ≥ 5]

[y ≤ 5]

lin

Nogood: [x ≥ 5] ∧[y ≥ 4] è false

[y ≤ 3]

x ≥ 5 èy ≤ 3

NICTA Copyright 2012 From imagination to impact

LCG is not SMT
•  Essential differences

–  LCG:
•  focus on optimization
•  communication by literals on domains
•  global constraint propagators with explanation

–  Capturing substructure

–  SMT:
•  focus on theorem proving + verification
•  communication by theory constraints
•  theory "propagators” that treat all similar constraints

simultaneously (e.g. difference logic, linear arithmetic)
–  Capturing sub-theories

NICTA Copyright 2012 From imagination to impact

Lessons from LCG
•  Lazy literal generation

–  Integer variable representation is generated only as
needed

•  Encoding can be bad
–  Even without the size blowup

•  Programmed search
–  For (many) problems default activity search is bad

•  typically where we cannot prove optimality

55

NICTA Copyright 2012 From imagination to impact

Lazy Literal Generation
•  For constraint problems over large domains lazy

literal generation is crucial

56

amaze fastfood filters league mspsp nonogram patt-set
Initial 8690 1043k 8204 341k 13534 448k 19916
Root 6409 729k 6944 211k 9779 364k 19795
Created 2214 9831 1310 967 6832 262k 15490
Percent 34% 1.3% 19% 0.45% 70% 72% 78%

proj-plan radiation shipshed solbat still-life tpp
Initial 18720 145k 2071k 12144 18947 19335
Root 18478 43144 2071k 9326 12737 18976
Created 5489 1993 12943 10398 3666 9232
Percent 30% 4.6% 0.62% 111% 29% 49%

NICTA Copyright 2012 From imagination to impact

Encoding versus Propagation
•  Propagation can be superior

–  Even if the encoding propagates as strongly
–  And its size complexity is no higher than the propagator

•  Example: multi-decision diagrams (n nodes)
–  SAT encoding of MDD propagates equivalent (no bigger O(nd))
–  Propagator uses structure of MDD (faster propagation)
–  Intermediate variables don’t help search (even though its VSIDS)

57

n Tseitin fails Equiv fails MDD fails
14 75.24 331k 24.39 63k 5.59 51k
15 366.03 1128k 67.59 148k 7.86 65k
16 --- --- 82.88 148k 18.03 123k
17 --- --- 183.28 276k 68.32 381k
18 --- --- 392.91 445k 101.31 500k
19 --- --- --- --- 118.16 538k
20 --- --- --- --- 384.99 1341k

NICTA Copyright 2012 From imagination to impact

Activity-based search is BAD
•  Car sequencing problem (production line

scheduling)
•  Comparing different search strategies

–  Static: selecting in order
–  DomWDeg: weight variables appearing in constraints

that fail
–  Impact: prioritising decisions that reduce domains
–  VSIDS

58

Static DomWDeg Impact VSIDS
Time (s) 206.3 0.8 951.3 1522.2
Solved (70) 66 70 55 47

NICTA Copyright 2012 From imagination to impact

Hybrid Searches
•  Most of our state-of-the-art results use
•  Hybrid searches

–  Problem specific objective based search
•  To find good solutions early

–  Switching to activity based search
•  To prove optimality

•  Sometimes alternating the two!
•  Or throwing a weighted coin to decide which

59

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Scheduling

–  Resource Constrained Project Scheduling Problems
(RCPSP)

•  (probably) the most studied scheduling problems
•  LCG closed 71 open problems
•  Solves more problems in 18s then previous SOTA in 1800s

–  RCPSP/Max (more complex precedence constraints)
•  LCG closed 578 open instances of 631
•  LCG recreates or betters all best known solutions by any

method on 2340 instances except 3

–  RCPSP/DC (discounted cashflow)
•  Always finds solution on 19440 instances, optimal in all but

152 (versus 832 in previous SOTA)
•  LCG is the SOTA complete method for this problem

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  Real World Application

–  Carpet Cutting
•  Complex packing problem
•  Cut carpet pieces from a roll to minimize length
•  Data from deployed solution

–  Lazy Clause Generation Solution
•  First approach to find and prove optimal solutions
•  Faster than the current deployed solution
•  Reduces waste by 35%

NICTA Copyright 2012 From imagination to impact

LCG Successes
•  MiniZinc Challenge

–  comparing CP solvers on a series of challenging
problems

–  Competitors
•  CP solvers such as Gecode, Eclipse, SICstus Prolog
•  MIP solvers CPLEX, Gurobi, SCIP (encoding by us)
•  Decompositions to SMT and SAT solvers

–  LCG solvers (from our group) were
•  First (Chuffed) and Second (CPX) in all categories in 2011 and

2012
•  First (Chuffed) in all categories in 2010

–  SMT based approach (fzn2smt) Fourth behind Gecode
–  Illustrates that the approach is strongly beneficial on a

wide range of problems

NICTA Copyright 2012 From imagination to impact

Outline
•  Modelling and solving
•  Propagation based solving
•  The advantages of keeping structure

–  Better (static) CNF encoding
–  Dynamic choice: propagation versus CNF encoding
–  Propagation with learning (Lazy Clause Generation)

•  MiniZinc
•  Conclusion

63

NICTA Copyright 2012 From imagination to impact

MiniZinc
•  A solver independent modelling language for

combinatorial optimization problems
–  Open source, developed since 2007
–  Closest thing to a Constraint Programming standard

•  Domains: Booleans, integers, floats, sets of
integers

•  Globals:
–  User defined predicates + functions
–  Reflection functions
–  Customizable library of global constraint definitions

•  Features
–  Annotations for adding non-declarative information

64

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

65

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

66

Parameters

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

67

Parameters

Dependent

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

68

Parameters

Dependent

Variables

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

69

Parameters

Dependent

Variables

Comprehensions

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

70

Parameters

Dependent

Variables

Comprehensions

Constraints

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

71

Parameters

Dependent

Variables

Comprehensions

Constraints

Global

NICTA Copyright 2012 From imagination to impact

MiniZinc Example: Jobshop Scheduling
int: n; set of int: Job=1..n; % no of jobs
int: m; set of int: Task=1..m; % task per job
int: span; % max end time

array[Job,Task] of int: d;
array[Job,Task] of Task: mc;
array[Job,Task] of var 0..span: s;
constraint forall(i in Job, j in 1..m-1)
 (s[i,j] + d[i,j] <= s[i,j+1]);

constraint forall(k in Task)
 (unary([s[i,j] | i in Job, j in Task
 where mc[i,j] = k],

 [d[i,j] | i in Job, j in Task
 where mc[i,j] = k]));
var int: obj = max([s[i,m] + d[i,m] | i in Job]);
solve minimize obj;

72

Parameters

Dependent

Variables

Comprehensions

Constraints

Global

Objective

NICTA Copyright 2012 From imagination to impact

MiniZinc Example
•  Separate data file
n = 2; m = 2; span = 10;

d = [|3,5|6,2|]; mc = [|1,2|2,1|];

•  Flattened to FlatZinc
array[1..4] of var 0..10: s
var 5..15: obj;
int_lin_le([1, -1], [s[1], s[2]], -3);
int_lin_le([1, -1], [s[3], s[4]], -6);
unary([s[1],s[4]],[3,2]);
unary([s[2],s[3]],[5,6]);
int_maximum([I1,I2],obj);
var 5..15: I1; var 5..15: I2;
int_lin_eq([-1,1],[I1,s[2]],-5);
int_lin_eq([-1,1],[I2,s[4]],-2);

73

NICTA Copyright 2012 From imagination to impact

User-defined constraint treatment
•  Solver dependent rewriting

–  E.g. replacing unary global by non-overlap disjunction
predicate unary(array[int] of var int:s;
 array[int] of int:d) =

forall(i,j in index_set(s) where i < j)

 (s[i] + d[i] <= s[j] \/ s[j] + d[j] <= s[i]);

•  Critical to support by many solvers
–  CP solvers: Gecode, Eclipse, SICStus Prolog,

Bprolog, Choco, Mistral, Jacop, izplus, Chuffed, CPX,
lazyfd, g12-fd

–  MIP solvers: SCIP, Cplex, Gurobi, Coin-OR-CBC
–  SAT + SMT Solvers: fzntini, bee, minisatID, fzn2smt

 74

NICTA Copyright 2012 From imagination to impact

libmzn
•  A new open source framework: LLVM like
•  Direct interface to solvers and C++ API
•  Specialist transformations

–  Booleanization
–  Linearization

•  A good modelling
 language for

–  SAT +
–  SMT solvers

•  Release
–  September 2013

75

libmzn

alldiff.mzn
alldiff.mzn

alldiff.mzn
alldiff.mzn

model.mzn

globals.mzn

alldiff.mzn

alldiff.mzn
alldiff.mzn

alldiff.mzn

mzn2fzn instance.fzn

data.dzn

solver

Solver libraryStandard library

User model/data

solution.dzn

CSE

bool2int

propagation
strength

frontend

instance.fzn

solver

solution.dzn

pretty printer

translator

C++ API

NICTA Copyright 2012 From imagination to impact

Conclusions
•  Combinatorial problems often include

–  Substantial and well understood substructures

•  Modelling should
–  allow these substructures to be expressed

•  Solving should
–  allow these substructures to be taken advantage of

•  Taking note of substructures can:
–  Improve design models (better translation)
–  Allow use to choose between encoding and propagation
–  Create powerful dynamic encodings

76

NICTA Copyright 2012 From imagination to impact

The Hard Word
•  If you want to compete with all optimization

technology
–  Competition is on a high level model, not CNF

•  Then ignoring the structure
–  Will not compete!

•  So remember

There are no CNF problems

77

NICTA Copyright 2012 From imagination to impact

The future directions
•  Details of how modern LCG solvers work

–  www.cs.mu.oz.au/~pjs/papers/cpx.pdf

•  More about MiniZinc
–  www.minizinc.org

•  More about BEE
–  http://amit.metodi.me/research/bee/

•  Structure-based extended resolution
–  Advantages of encoding + propagation simultaneously
–  http://arxiv.org/abs/1306.4418

•  Unsatisfiable cores for constraint programming
–  Easy to translate UNSAT core methods from SAT
–  http://arxiv.org/abs/1305.1690 78

