
Concurrent Clause Strengthening
Siert Wieringa and Keijo Heljanko
Department of Information and Computer Science
Aalto University, School of Science and Technology
siert.wieringa@aalto.fi

July 10, 2013

Concurrent Clause Strengthening
July 10, 2013

2/21

Introduction

I Modern SAT solvers rely on many techniques outside the
core CDCL search procedure.

I For example preprocessing and inprocessing, but also
conflict clause strengthening.

I The solver must decide when, and to what extent, it should
apply such techniques.

I Instead of interleaving additional reasoning with search,
both can be executed concurrently.

Concurrent Clause Strengthening
July 10, 2013

3/21

Using concurrency

I Avoids difficult to design heuristics for deciding when to
switch between tasks.

I Exploits the availability of multi-core hardware.

I Provides a true division of work without dividing the search
space.

I Concurrent clause strengthening yields surprisingly
consistent performance improvements.

Concurrent Clause Strengthening
July 10, 2013

4/21

Clause strengthening

I Strengthening a clause means removing redundant literals.

Given: A clause c such that F |= c
Find: A subclause c′ ⊆ c such that F |= c′

I Finding c′ such that it is of minimal length is an NP-hard
problem.

I MiniSAT minimizes all conflict clauses with respect to the
clauses used in their derivation.

Concurrent Clause Strengthening
July 10, 2013

5/21

The solver-reducer architecture

solver reducer

work set

result queue

I Two concurrently executing threads.

I The SOLVER is a conventional CDCL solver.

I The REDUCER provides a clause strengthening algorithm.

I Communication solely by passing clauses through the
work set and the result queue.

Concurrent Clause Strengthening
July 10, 2013

6/21

Basic operation
solver reducer

work set

result queue

I Whenever the SOLVER learns a clause it writes a copy of
that clause to the work set.

I The REDUCER reads its input clauses from the work set,
and writes clauses it has strengthened to the result queue.

I The SOLVER frequently introduces clauses from the result
queue to its learnt clause database.

I The REDUCER has its own copy of the problem clauses as
well as its own learnt clause database.

Concurrent Clause Strengthening
July 10, 2013

7/21

The REDUCER’s algorithm
solver reducer

work set

result queue

I Assign a literal of input clause c to false, then perform unit
propagation.

I Remove from c literals that became assigned false during
unit propagation.

I Repeat until all literals of c are assigned false, or a conflict
arises.

I If a conflict arises then analyze, learn, and return the
subclause c′ ⊆ c containing literals “causing” the conflict.

I Otherwise, add c to the learnt clause database, return c.

Concurrent Clause Strengthening
July 10, 2013

8/21

The work set
solver reducer

work set

result queue

I As the REDUCER learns, it becomes stronger but slower.

I The REDUCER can usually not keep up with the supply of
clauses from the SOLVER.

I How to implement the work set?

I FIFO - Tends to deliver clauses to the REDUCER that are
old, and often no longer interesting.

I LIFO - Strong clauses may never be delivered as they shift
backwards in the queue quickly.

Concurrent Clause Strengthening
July 10, 2013

9/21

Sorting the work set
solver reducer

work set

result queue

I We can use clause length or LBD as an approximation for
clause quality.

I As the average length changes clauses that were relatively
long when learnt may seem short when they are old.

I Solution: Limit the capacity.

I If the SOLVER adds a clause to a full work set then this
clause replaces the oldest clause.

I If the REDUCER requests a clause from a non-empty work
set it receives the best clause.

Concurrent Clause Strengthening
July 10, 2013

10/21

Keeping it simple
solver reducer

work set

result queue

I The REDUCER only returns clauses that are strict
subclauses of its inputs.

I The REDUCER does not share its learnt clauses.

I The REDUCER assigns literals in the order they appear in
the input clause.

I The SOLVER does not have a mechanism for deleting
clauses for which a subclause is found in the result queue.

I The result queue is a simple unbounded FIFO queue.

Concurrent Clause Strengthening
July 10, 2013

11/21

Implementation
solver reducer

work set

result queue

I MiniRed based on MiniSAT 2.2.0.

I GlucoRed based on Glucose 2.1 / 2.2.

I Base solvers modified as little as possible.

I The code added to both solvers is identical, except:

I MiniRed sorts its work set by clause length.

I GlucoRed sorts its work set by LBD.

Concurrent Clause Strengthening
July 10, 2013

12/21

Average clause length experiment

34.6% discarded from workset

30.2% not reduced

solver

reducer

reduced?

work set

result queue

56.8
91.3

38.1

27.6

15.3

32.932.9

I Average over 367 benchmarks.

I MiniRed with default settings.

I work set capacity 1000 clauses.

Concurrent Clause Strengthening
July 10, 2013

12/21

Average clause length experiment

34.6% discarded from workset

30.2% not reduced

solver

reducer

reduced?

work set

result queue

56.8
91.3

38.1

27.6

15.3

32.932.9

I Average over 367 benchmarks.

I MiniRed with default settings.

I work set capacity 1000 clauses.

Concurrent Clause Strengthening
July 10, 2013

12/21

Average clause length experiment

34.6% discarded from workset

30.2% not reduced

solver

reducer

reduced?

work set

result queue

56.8
91.3

38.1

27.6

15.3

32.932.9

I Average over 367 benchmarks.

I MiniRed with default settings.

I work set capacity 1000 clauses.

Concurrent Clause Strengthening
July 10, 2013

12/21

Average clause length experiment

34.6% discarded from workset

30.2% not reduced

solver

reducer

reduced?

work set

result queue

56.8
91.3

38.1

27.6

15.3

32.932.9

I Average over 367 benchmarks.

I MiniRed with default settings.

I work set capacity 1000 clauses.

Concurrent Clause Strengthening
July 10, 2013

12/21

Average clause length experiment

34.6% discarded from workset

30.2% not reduced

solver

reducer

reduced?

work set

result queue

56.8
91.3

38.1

27.6

15.3

32.932.9

I Average over 367 benchmarks.

I MiniRed with default settings.

I work set capacity 1000 clauses.

Concurrent Clause Strengthening
July 10, 2013

13/21

Performance testing

I The set Competition contains 547 application track
benchmarks (Competition 2011/Challenge 2012).

I The set Simplified contains 501 benchmarks resulting from
running SatElite on the Competition set.

I In these slides we will only present results for the
Simplified set.

I 900 second wall clock time limit.

I 1800 second CPU time limit.

Concurrent Clause Strengthening
July 10, 2013

14/21

MiniRed scatter plot

 1

 10

 100

 1000

 1 10 100 1000

M
in

iR
e

d
 -

 w
a

ll
c
lo

c
k
 t

im
e

 (
s
)

MiniSAT - wall clock time (s)

x/2
x/4

unsatisfiable
satisfiable

Concurrent Clause Strengthening
July 10, 2013

15/21

GlucoRed scatter plot

 1

 10

 100

 1000

 1 10 100 1000

G
lu

c
o

R
e

d
 -

 w
a

ll
c
lo

c
k
 t

im
e

 (
s
)

Glucose - wall clock time (s)

x/2
x/4

unsatisfiable
satisfiable

Concurrent Clause Strengthening
July 10, 2013

16/21

UNSAT benchmarks - wall clock time cactus

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 60 80 100 120 140 160 180 200 220 240

w
a

ll
c
lo

c
k
 t

im
e

 (
s
)

instances solved

MiniSAT (#164)
MiniRed (#222)
Glucose (#220)

GlucoRed (#237)

Concurrent Clause Strengthening
July 10, 2013

17/21

UNSAT benchmarks - CPU time cactus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 60 80 100 120 140 160 180 200 220 240

C
P

U
 t

im
e

 (
s
)

instances solved

MiniSAT (#191)
MiniRed (#222)
Glucose (#232)

GlucoRed (#237)

Concurrent Clause Strengthening
July 10, 2013

18/21

SAT benchmarks - wall clock time cactus

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 110 120 130 140 150 160

w
a

ll
c
lo

c
k
 t

im
e

 (
s
)

instances solved

MiniSAT (#150)
MiniRed (#159)
Glucose (#155)

GlucoRed (#147)

Concurrent Clause Strengthening
July 10, 2013

19/21

Results discussion

I Concurrent clause strengthening is strong on unsatisfiable
benchmarks.

GlucoRed PeneLoPe
2-core 2-core 4-core 8-core

UNSAT Wall clock 237 227 231 247
CPU 237 227 221 217

SAT Wall clock 147 142 160 164
CPU 149 142 154 149

I Portfolio solvers expose orthogonal behavior.

I The two approaches can be combined!

Concurrent Clause Strengthening
July 10, 2013

20/21

Conclusions

I Concurrent clause strengthening is a simple technique,
providing significant performance improvements.

I Particularly strong on unsatisfiable benchmarks.

I Using concurrency to aid CDCL search, rather than to
parallelize it.

I The basic idea can be exploited in many ways, e.g.
concurrent inprocessing.

Concurrent Clause Strengthening
July 10, 2013

21/21

Availability

I Source code for MiniRed and GlucoRed is available from:

http://bitbucket.org/siert

I MiniRed and GlucoRed have been integrated in ZZ:

http://bitbucket.org/niklaseen

I The ZZ-framework by Niklas Eén provides the Bip model
checker, including e.g. PDR and BMC algorithms.

http://bitbucket.org/siert
http://bitbucket.org/niklaseen

Concurrent Clause Strengthening
July 10, 2013

21/21

Capacity of the work set
solver reducer

work set

result queue

 0

 200

 400

 600

 800

 1000

 0 20000 40000 60000 80000 100000 120000 140000

#
 C

la
u
s
e
s
 i
n
 w

o
rk

 s
e
t

Clause insertion #

c7nidw f8b IBM

I The default work set capacity is 1000 clauses.

Concurrent Clause Strengthening
July 10, 2013

21/21

Average clause length experiment (2)

34.6% discarded from workset 40.3%

30.2% not reduced 16.4%

solver

reducer

reduced?

work set

result queue

56.8

32.9

143.4

27.4

38.1
44.4

32.9
27.4

91.3

27.6

15.3

287.9

25.0

12.9I Average over 367 benchmarks.

I Clause min. disabled in SOLVER.

I Total number of clauses generated increased by 17%.

